Methods for complex processing and interpretation of radar, acoustic, optical and infrared signals from unmanned aerial vehicles
DOI:
https://doi.org/10.30837/rt.2020.3.202.19Keywords:
unmanned aerial vehicle, detection, recognition, radar station, sodar, video camera, integrated system, signal processing.Abstract
Unmanned aerial vehicles (UAVs) are currently widely used in solving a wide range of useful tasks, and on the other hand, they are capable of carrying an active or passive potential threat to various areas of human activity, namely, economic, daily and military. Radar, acoustic, infrared and optical means are currently used to detect and measure the coordinates of unmanned aerial vehicles.
Since the areas of capabilities of different methods do not coincide, the prerequisite for the joint use of systems of various types appears to expand the set of measured parameters, the range of observed distances and increase the information content of the obtained data by joint (complex) processing. Complex processing of signals of various information channels can be carried out both at the stage of detection and at the stage of measuring coordinates. Moreover, at the detection stage, it is most in demand due to the complexity of the detection-recognition task.
The number of publications in this area is constantly increasing; attention is also paid to complex systems built using various physical sensors. However, the efficiency of functioning of the systems with complex signal processing in practice is not sufficient.
The article is devoted to the analysis of the capabilities of integrated systems with the processing of multimodal information obtained from each of the channels used, as well as the development of new more efficient methods for integrating radar, optical, infrared and acoustic channels of integrated systems for the detection and measurement of UAV coordinates.References
Кошкин Р.П. Беспилотные авиационные системы. Москва : Стратегические приоритеты, 2016. 676 с.
Макаренко С. И., Тимошенко А. В., Васильченко А. С. Анализ средств и способов противодействия беспилотным летательным аппаратам. Ч. 1. Беспилотный летательный аппарат как объект обнаружения и поражения / Системы управления, связи и безопасности. 2020. № 1. С. 109-146. DOI: 10.24411/2410-9916-2020-10105.
Kartashov V.M., Oleynikov V.N, Sheyko S.A., Koryttsev I.V., Babkin S.I., Zubkov O.V. Peculiarities of small unmanned aerial vehicles detection and recognition // Telecommunications and Radio Engineering. 2019. Vol. 78, Issue 9. Р. 771–781.
Kartashov V. M., Oleynikov V. N., Sheyko S. A., Babkin S. I., Koryttsev I. V., Zubkov O. V., Anokhin M. A. Information characteristics of sound radiation of small unmanned aerial vehicles // Telecommunications and Radio Engineering. 2018. Vol. 77., Iss. 10. Р. 915–924.
Карташов В.М., Олейников В.Н., Шейко С.А., Бабкин С.И., Корытцев И.В., Зубков О.В., Анохин М.А. Информационные характеристики звукового излучения малых беспилотных летательных аппаратов// Радиотехника. 2017. Вып. 191. С. 181–193.
Kartashov V., Oleynikov V., Zubkov O., Sheiko S. Optical detection of unmanned air vehicles on a video stream in a real-time // The Fourth International Conferenceon Information and Telecommunication Technologies and Radio Electronics (UkrMiCo’2019), 9-13 September 2019, Odessa, Ukraine. 4 p.
Oleksandr Sotnikov, Vladimir Kartashov, Oleksandr Tymochko, Oleg Sergiyenko, Vera Tyrsa, Paolo Mercorelli, Wendy Flores-Fuentes. Methods for Ensuring the Accuracy of Radiometric and Optoelectronic Navigation Systems of Flying Robots in a Developed Infrastructure. Chapter 16 // Machine Vision and Navigation; Editors: Sergiyenko, Oleg, Flores-Fuentes, Wendy, Mercorelli, Paolo. Р.537–578.
Oleynikov V. N , Zubkov O. V., Kartashov V. M., Korytsev I. V., Babkin S. I., Sheiko S. A. Investigation of detection and recognition efficiency of small unmanned aerial vehicles on their acoustic emission // Telecommunications and Radio Engineering. 2019. Vol. 78, Issue 9. Р. 759–770.
Kartashov V., Oleynikov V., Koryttsev I., Zubkov O., Babkin S., Sheiko S. Processing and Recognition of Small Unmanned Vehicles Sound Signals // 2018 International Scientific-Practical Conference on Problems of Infocommunications. Science and Technology (PIC S and T 2018). Proceedings, 31 January 2019. Р. 392–396.
Kartashov V., Oleynikov V., Koryttsev I., Sheyko S., Zubkov O., Babkin S., Selieznov I. Use of Acoustic Signature for Detection, Recognition and Direction Finding of Small Unmanned Aerial Vehicles // 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 25-29 Feb. 2020. Р. 1–4.
Kartashov V.M., Oleynikov V.N, Zubkov O.V., Korytsev I.V., Babkin S. I., Sheiko S.A., Kolend-ovskaya M.M. Spatial-temporal Processing of acoustic Signals of Unmanned Aerial Vehicles // Telecommunica-tions and Radio Engineering. 2020. Vol. 79, Iss. 9. Р. 769–780.
Oleynikov V., Zubkov O., Kartashov V., Koryttsev I., Sheiko S., Babkin S. Experimental estimation of direction finding to unmanned air vehicles algorithms efficiency by their acoustic emission // 2019 International Scientific-Practical Conference: Problems of Infocommunications. Science and Technology (PIC S and T 2019). Proceeding, 2019. Р. 175–178.
Kartashov V. M., Tikhonov V. A., Voronin V. V. Features of Construction and Application of Complex Systems for the Atmosphere Remote Sounding // Telecommunications and Radio Engineering. 2017. Vol. 78, Issue 8. Р.743–749.
Карташов В.М., Олейников В.Н., Колендовская М.М., Тимошенко Л.П., Капуста А.И., Рыбников Н.В. Комплексирование изображений при обнаружении беспилотных летательных аппаратов // Радиотехника. 2020. Вып. 201. С.120–129.
Kartashov V.M., Tikhonov V.A., Voronin V.V., Tymoshenko L.P. Complex model of random signal in problems of acoustic sounding of atmosphere // Telecommunications and Radio Engineering. 2016. Vol. 75, Iss. 20. Р. 1885–1892.
Developing and Applying Optoelectronics in Machine Vision / Oleg Sergiyenko and Julio C. Rodriguez-Quiñonez; 2016. IGI Global. 341 p.
Sytnik O., KartashovV. Methods and Algorithms for Technical Visionin Radar Introscopy. Chapter 13 // Optoelectronics in Machine Vision-Based Theories and Applications. IGI Global, 2019. Р. 373–391.
Дистанционные методы и средства исследования процессов в атмосфере Земли ; под ред. Б.Л. Кащеева, Е.Г. Прошкина, М.Ф. Лагутина. Харьков : Бизнес Информ, 2002. 426 с.
Карташов В.М. Модели и методы обработки сигналов систем радиоакустического и акустического зондирования атмосферы. Харьков : ХНУРЭ, 2011. 234 с.
Сосулин Ю.Г. Тероретические основы радиолокации и радионавигации : учеб. пособие для вузов. Москва : Радио и связь, 1992. 304 с.
Карташов В.М. и др. Обработка сигналов в радиоэлектронных системах дистанционного мониторинга атмосферы. Харьков : ХНУРЭ, 2014. 312 с.
Koch W., Koller J., Ulmke M. Ground target tracking and road map extraction // ISPRS J. Photogramm. Remote Sens. 2006; 61:197–208. doi: 10.1016/j.isprsjprs.2006.09.013.
Hengy S., Laurenzis M., Schertzer S., Hommes A., Kloeppel F., Shoykhetbrod A., Geibig T., Johannes W., Rassy O., Christnacher F. Multimodal UAV detection: Study of various intrusion scenarios // Proceedings of the Electro-Optical Remote Sensing XI International Society for Optics and Photonics; Warsaw, Poland. 11–14 September 2017. Р. 104340P.
Laurenzis M., Hengy S., Hammer M., Hommes A., Johannes W., Giovanneschi F., Rassy O., Bacher E., Schertzer S., Poyet J.M. An adaptive sensing approach for the detection of small UAV: First investigation of static sensor network and moving sensor platform // Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII International Society for Optics and Photonics; Orlando, FL, USA. 16–19 April 2018. Р. 106460S.
Park S., Shin S., Kim Y., Matson E.T., Lee K., Kolodzy P.J., Slater J.C., Scherreik M., Sam M., Gallagher J.C., et al. Combination of radar and audio sensors for identification of rotor-type unmanned aerial vehicles // Proceedings of the 2015 IEEE SENSORS; Busan, Korea. 1–4 November 2015. Р. 1–4.
Charvat G.L., Fenn A.J., Perry B.T. The MIT IAP radar course: Build a small radar system capable of sensing range, Doppler, and synthetic aperture (SAR) imaging // Proceedings of the 2012 IEEE Radar Conference; Atlanta, GA, USA. 7–11 May 2012; pp. 0138–0144.
Liu H., Wei Z., Chen Y., Pan J., Lin L., Ren Y. Drone detection based on an audio-assisted camera array // Proceedings of the 2017 IEEE Third International Conference on Multimedia Big Data (BigMM); Laguna Hills, CA, USA. 19–21 April 2017; pp. 402–406.
Басов О.О., Карпов А.А. Анализ стратегий и методов объединения многомодальной информации // Обработка информации и управления. 2015. №2. С.7–14.
Atrey P. K., Hossain M. A., Kankanhalli M. S. Multimoda Fusion for Multimedia Analysis: a Survey //
Multimedia Systems. 2010. Vol. 16. Iss. 6. Р. 345–379.
Wu K., Lin C. K., Chang E., Smith J. R. Multimodal Information Fusion for Video Concept Detection // Proceedings IEEE Intern. Conf. on Image Processing, Singapore, 2004. Р. 2391–2394.
Bendjebbour A., et al. Multisensor Image Segmentation Using Dempster–Shafer Fusion in Markov FieldsContext // IEEE Transactions on Geoscience and Remote Sensing. 2001. Vol. 39(8). Р. 1789–1798.
Nefian A. V., Liang L., Pi X., Liu X., Murphye K. Dynamic Bayesian Networks for Audio-visual Speech Recognition // EURASIP Journal on Advances in Signal Processing. 2002. N 11. Р. 1–15.
Town C. Multi-sensory and Multi-modal Fusion for Sentient Computing // Intern. Journal of ComputerVision. 2007. Vol. 71. Р. 235–253.
Tikhonov V.I. Optimal reception of signals. Mосква : Radio and communications, 1983. 320 p.
Falkovich S. E., Khomyakov E. N. Statistical theory of measuring radio systems. Mосква : Radio and communications, 1981. 288 p.
Ситнік О.В., Карташов В.М. Радіотехнічні системи : навч. посібник. Харків : Сміт, 2009. 448 с.
Shirman Y.D., Manzhos V.N. The theory and technique of processing radar information against the background of interference. Mосква : Radio and communications, 1981. 416 p.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).