Investigation of keyboard digraphs informational parameters for keystroke-based identification tasks of computer networks users
DOI:
https://doi.org/10.30837/rt.2020.2.201.19Keywords:
information security, authentication, keystroke, keystroke digraph, multi-factor classification, random forest classifierAbstract
The accuracy of keystroke based authentication methods for computer networks users is determined by a number of factors, the main of which are: user classification algorithm, number of experiment participants with different keystroke experience, method of data entry and hardware platform on which authentication systems testing is performed. Another very important factor, namely, the kind of timing features of keystorke, on the basis of which user profiles are built, is very often not taken into account.
In the first part of the work the different timing features of keystroke are analyzed. Three main classes are identified: timing features of keyboard monographs, timing features of consecutive keyboard events and integral features of typing. Given the accuracy of authentication and the required volume of training and authentication samples, 4 timing features of keyboard monographs (2 absolute and 2 relative) and 15 timing features of keyboard digraphs (3 absolute and 12 relative) were selected as experimental informative parameters of keystroke.
In the second part of the work, the most informative timing features of the keystroke monographs and digraphs have been found using "Keystroke Dynamics Benchmark Data Set " and Orange software. The assumption of different informativeness of the keystroke monographs and digraphs timing features was experimentally confirmed. The most useful (provides the highest authentication accuracy) timing features of keystroke dynamics is relative features of keystroke time parameters, which contains a flight time.References
Заяць В.М. Математичний опис системи розпізнавання користувача комп’ютера / В.М. Заяць, М.М.Заяць // Фізико-математичне моделювання та інформаційні технології. Львів, 2005. Вип. 1. С. 146 – 152.
Заяць В.М. Визначення пріоритету детермінованих ознак при побудові системи розпізнавання об’єктів / В.М.Заяць, О.Шокира // Зб. пр. наук.-практ. конф. ЛДІНТУ імені В. Чорновола "Математичне моделювання складних систем". 2007. С.135 – 137.
Сравнительный анализ перспективных технологий аутентификации пользователей ПК по клавиатурному почерку / В. А. Алексеев, Д. В. Маслий, Д. Ю. Горелов // Радиотехника. 2017. Вып. 189. С. 195 – 201.
Keystroke Dynamics Benchmark Data Set. URL: http:// https://www.cs.cmu.edu/~keystroke (дата звернення 25.02.2020).
Дослідження статистичних властивостей клавіатурного почерку для вирішення задач аутентифікації користувачів комп’ютерних мереж / Д. Ю. Горелов, В. О. Алєксєєв, В. М. Бублик, Д. В. Маслій // Радиотехника. 2017. Вып. 197. С. 78 – 85.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).