Rules for detecting a radiometric signal in multi-channel reception
DOI:
https://doi.org/10.30837/rt.2020.2.201.15Keywords:
radiometric signal, multichannel reception, non-stationary random process, detection rule, likelihood ratio, radiometerAbstract
Radiometric signal detection rules have been developed based on the likelihood of ratio method, provided that these radiometric signals are of Wiener-distributed non-stationary random process. Detection rules have been derived in the paper for a non-stationary signal against non-stationary interferences, including intrinsic noise of radiometric channels. Detection rules for two receiving positions (single-baseline system) and joint signal processing on four receiving positions (dual-baseline system) have been obtained. Physically existing minor simplifications have been injected. The feasible detection block diagrams have been created, accounting for the threshold levels, and according to radiometric signal detection rules in both single- and dual-baseline mapping systems.
For unambiguous detection of useful signals, it is necessary to have scanning antenna systems. The width of the radiation patterns of the reception points antennas is determined by the area of the mapping spot. In this area there should be, for example, four intersections of the stroke difference. Implementation of a simplified scheme is possible on the basis of high-speed devices to ensure a sufficient signal compression ratio and the longest range of the system as a whole. At the output of the correlation detectors of each base, inter-base correlators are installed. At their outputs are threshold devices with a threshold level that is equal to the variance at the outputs between the base correlators, in the absence of useful signals.
The use of a simplified scheme is possible not only in the millimeter (mm), or (and) in the infrared (IR) wavelength range. The use of the IR range significantly increases the resolving power with respect to the stroke difference. The implementation of the synthesized aperture mode of antennas in mm and IR wavelength ranges will allow high-quality mapping from the ground orbit of space objects.References
Левин Б.Р. Теоретические основы статистической радиотехники. Кн. 1. Москва : Сов. радио, 1969. 752 с.
Вентциль А.Д. Курс теории случайных процессов. Москва : Наука, 1996. 400с.
Справочник по радиолокации ; под ред. М. Сколника. Т. 4. Радиолокационные станции и системы ; под ред. М.М. Вейсбена. Москва : Сов. радио, 1978. 376с.
Алмазов В.Б. Методы пассивной радиолокации. Харьков : ВИРТА, 1974. 86 с.
Радиоэлектронные системы: Основы построения и теория. Справочник. Изд. 2-е. перераб. и доп. ; под ред. Я.Д. Ширмана. Москва : Радиотехника, 2007. 512с.
Розов А.К. Обнаружение сигналов в нестационарных гидроакустических условиях. Ленинград : Судостроение, 1987. 132с.
Биков В.Н. Виявлення малорозмірних об’єктів радіометричною інформаційною системою мм діапазону з шумовою підсвічуванням // Радіоелектронні і комп’ютерні системи 2(10). Харків : ХАІ, 2005. С. 5-11.
Алмазов В.Б., Манжос В.М., Камчатний Н.И. Упрощенный алгоритм обнаружения шумового сигнала в двухпозиционной системе пассивной локации // Известия высших учебных заведений. Радиоэлектроника. 1987. Т. 30. № 11. С.20–24.
Lukin K.A., Kudriashov V.V., Vyplavin P.L., Palamarchuk V.P., Lukin S.K. Coherent radiometric imaging using antennas with beam synthesizing // International Journal of Microwave and Wireless Technologies, 7, Spec. Iss. 3-4, pp. 453 - 458, Cambridge University Press, 2015.
Кudriashov V.V. A Modified Maximum Likelihood Method for Estimation of Mutual Delay and Power of Noise Signals by Bistatic Radiometer. Comptes Rendus - Academie Bulgarie des Sciences, 68, 5, pp. 631 – 640, Prof. Marin Drinov publishing house of Bulgarian Academy of Sciences, 2015.
Абраменко О.О., Зарицький М.М., Шевченко А.Ф., Челпанов А.В. Система керування функціональними режимами багатофункціональної РЛС з фазованою антенною решіткою. Системи озброєння та військова техніка. Харків : ХУПС, 2017. №1(49). С. 69–72.
Карлов В.Д., Леонов І.Г., Присяжний А.Є., Сидоренко Д.С. Системне проектування радіоелектронних пристроїв. Харків : ХУПС, 2017. 80 с.
Варіанти правил виявлення радіометричного сигналу при одноканальному прийомі / В.Є. Кудряшов, С.М. Тамаш, Д.С. Шмаков // Вісник ХНУ. Сер. Радіофізика та електроніка. Харків : ХНУ, 2017. Вип. 27. С. 75–79.
Кudriashov V.Е. A Bistatic Radiometry System for Object Mapping // Telecommunications and Radio Engineering Telecommunications and Radio Engineering. Begell House. 2018. Vol. 77. Iss. 20. Р. 1813–1826. DOI: 10.1615/TelecomRadEng.v77.i20.40 Link: http://www.dl. begellhouse.com/journals/0632a9d54 950b268, 06eba9e05be51 735,7ccae443386bb624.html1.
Кудряшов В.Є., Тамаш С.М., Шмаков Д.С. Рознесена двохпозиційна радіометрична система картографування об’єктів // Радіотехніка. 2017. Вип. 191. С. 158–166.
Kudriashov V., Martin-Neira M., Barat I., et al. System design for the event horizon imaging experiment using the PECMEO concept. Chin. J. Space Sci., 2019, 39(2): 250–266.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).