A predicate model of process knowledge in detecting and recognizing the burst structure of signals from aircraft in surveillance radars

Authors

  • В.В. Жирнов
  • С.В. Солонская

DOI:

https://doi.org/10.30837/rt.2020.2.201.12

Keywords:

model of process knowledge, decision-making, moving object, detection, recognition, intelligent system

Abstract

A model of process knowledge in detecting and recognizing the burst structure of air object signals in the intelligent surveillance radar systems is presented. The relevance of this work is to improve the efficiency of radar monitoring systems and moving object control systems by creating an universal algorithm for automating the process of detecting and recognizing weak useful signals under conditions of interfering influences. The developed predicate model of process knowledge includes procedures to form and analyze the geometric signal image of point objects and decision-making the observed objects. Based on this model of process knowledge, a case-based decision-making method has been developed. The process knowledge of converting radar signals into the burst structure symbolic images of the point moving air objects is formalized. It is possible to build various types of links between information units in the proposed model. First of all, these links characterize the relations between information units; the semantics of these relations is both declarative and procedural. On the other hand, the process is described both by functional relations and relations between information cells. The processing knowledge of signal mark models for air objects such as an airplane, a helicopter, an unmanned aerial vehicle (UAV) is generated, taking into account declarative and procedural predicate signs. The proposed model includes a system of predicate equations, as a result of their solution, the burst structure type of the moving object signals and a list of procedural and semantic operations for processing knowledge are determined. It is shown that to detect and recognize the burst structure of signals, the production or combined models are most applicable; this type of model uses some elements of logical and network models.

References

Сколник М.И. Справочник по радиолокации. В 2 т. ; пер. с англ. ; под ред. B.C. Вербы. Москва : Техносфера, 2014. 672 с.

Иванилов А.А. Реляционные алгебры и алгебры предикатов / А. А. Иванилов, Ю.П. Шабанов-Кушнаренко // Восточно-Европейский журнал передовых технологий. 2007. № 4/2. С. 43–48.

Russel S. Artificial intelligence. A modern approach, Second Edition / S. Russel, P. Norvig. Williams, 2006. 1410 p.

Бондаренко М. Ф. Теория интеллекта : учебник / М. Ф. Бондаренко, Ю. П. Шабанов-Кушнаренко. Харьков : СМИТ, 2007. 576 с.

Горелик, А. Л. Методы распознавания / А. Л. Горелик, В. А. Скрипкин. Москва : Высш. шк., 2004. 261 с.

Журавлев Ю. И. Об алгебраическом подходе к решению задач распознавания или классификации // Проблемы кибернетики. 2005. Вып. 33. С. 5–68.

Жирнов В.В., Солонская С.В. Предикатная модель процессных знаний о наблюдаемых объектах в многоканальных интеллектуальных системах мониторинга // Радиотехника. 2019. Вып. 199. С. 67–74.

Solonskaya S. V., Zhirnov, V. V. Intelligent analysis of radar data based on fuzzy transforms // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). 2018. 77 (15). Р. 1321–1329.

Shubin I., Snisar S., Zhyrnov V., Slavhorodskyi V. Practical Application of Formal Representation of nformation for Intelligent Radar Systems. 5th International Scientific-Practical Conference “Problems of Infocommunications. Science and Technology (PIC S&T)”. 2018. 9–12 October. P. 433–436.

Solonskaya S.V., Zhirnov V.V. Signal processing in the intelligence systems of detecting low-observable and low-doppler aerial targets // Telecommunications and Radio Engineering. 2018. Vol. 77, Is. 20. P. 1827–1835.

Zhirnov V.V., Solonskaya S.V., Zima I.I. Magnetic and electric aspects of genesis of the radar angel clutters and their virtual imaging // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika) 2016. 75 (15). Р. 1331–1341.

Solonska S., Zhyrnov V., Holovin O. Semantic Processing of Radar Spectral Information for Air Object Recognition // 2019 IEEE International Scientific-Practical Conference: Problems of Infocommunications Science and Technology, PIC S and T 2019 Proceedings.

Shubin I., Solonska S., Snisar S., Slavhorodskyi V., Skovorodnikova V. Semantic Radar Technology for Detecting and Recognizing Low-Visible Air Objects // 2019 IEEE International Scientific-Practical Conference: Problems of Infocommunications Science and Technology, PIC S and T 2019 Proceedings.

How to Cite

Жирнов, В., & Солонская, С. (2020). A predicate model of process knowledge in detecting and recognizing the burst structure of signals from aircraft in surveillance radars. Radiotekhnika, 2(201), 137–144. https://doi.org/10.30837/rt.2020.2.201.12

Issue

Section

Articles