Integration of the image in the case of manifold lightless appliances
DOI:
https://doi.org/10.30837/rt.2020.2.201.10Keywords:
unmanned aerial vehicle, image, integration, detection, recognition, quality criterionAbstract
The most promising direction for solving the urgent task of detecting and tracking unmanned aerial vehicles (UAVs) is the use of a multispectral optoelectronic system for acquiring and integrating images of different wavelength ranges. In practice, taking into account the peculiarities of spectrozonal processing and image formation, it becomes necessary to implement a complex multi-stage procedure for obtaining, assessing quality, making decisions about the possibility of using the resulting images and their immediate subsequent complex use.
The article considers the task of complexing images in the visible and near infrared ranges when UAVs are detected. It is shown that it is advisable to perform the integration at the level of channel decisions, or by forming a combined image. In this case, the accuracy of combining the fields of view of multispectral sensors is important.
At the stage of forming a generalized image, it is advisable to use formalized informational criteria that sufficiently reflect the subjective value of the images. When obtaining the resulting image, it is preferable to use the weight function method, which allows combining channels using a priori information about their value, as well as on the basis of adaptation to changing input information. Among the methods of complexing by decomposing images into a spectrum, the most preferable is the method using wavelet transform, since it allows you to obtain information about objects in the spatial-frequency representation. If poorly formalized partial images enter the channels of the processing system, then a trained two-level complexing scheme should be used.
It is shown that the integration process increases the information content of the resulting image when using UAVs in comparison with the images obtained in individual channels of the system and provides significant qualitative and quantitative advantages in solving problems of detection, discrimination, recognition, tracking and target designation.References
Кошкин Р.П. Беспилотные авиационные системы. Москва : Стратегические приоритеты, 2016. 676 с.
Oleynikov V. N., Zubkov O. V., Kartashov V. M., Korytsev I. V., Babkin S. I., Sheiko S. A. Investigation of detectionand recognition efficiency of small unmanned aerial vehicles on their acoustic radiation // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). 2019. Vol. 78, Is. 9. P. 759–770.
Kartashov V.M., Oleynikov V.N, Sheyko S.A., Babkin S.I., Koryttsev I.V., Zubkov O.V., Anokhin M.A. In-formation characteristics of sound radiationof small unmannedaerial vehicles // Telecommunications and RadioEngineering (English translation of Elektrosvyaz and Radiotekhnika). 2018. V.77 (10). Р. 915–924.
Zheeng Y. Image Fusion and Its Applications. Publicher: In Tech. 2011. 252 p.
Strelkova T.,Kartashov V., Lytyuga A., Strelkov A. Theoretical Methods of Images Processing in Optoelectronic Systems. Chapter 6. // Developing and Applying Optoelectronics in Machine Vision / Oleg Sergiyenko and Julio C. Rodriguez-Quiñonez. (341p.) USA. Herhey, 2017. Р.180–205.
Гривачевський А.П., Прудиус І.Н. Підвищення інформативності мультиспектральнихзображень шля-хом мультимодального комплексування // Visnyk NTUUKPI Series Radiotekhnika. Radiobuduvannia, 2018. Is. 73. Р. 40–49.
Фролов В.Н. Методы информационного совмещения изображений в многоканальных оптико-электронных системах / В.Н. Фролов, В.А. Тупиков, В.А. Павлова, В.А. Александров // Известия ТулГУ. Тех-нические науки. 2016. №11-3. С.95–104.
Бондаренко М.А. Оценка информативности комбинированных изображений в мультиспектральных системах технического зрения / М.А. Бондаренко, В.И. Дрыкин // Программные системы и вычислительные методы. 2016. №1. С. 64–79.
Карташов В.М., Беляев А.В. Обнаружение объектов заданной формы и определение их координат на изображении в мультимедийном стрелковом тренажере // Системи обробки інформації. (Харьков). 2015. Вип.10 (135). С.16–20.
Романов Ю.Н. Оценка качества цифровых изображений/ А.П. Богданов, Ю.Н. Романов // Механика, управление и информатика. 2012. №9. С.218–226.
Карташов В.М., Беляев А.В. Обнаружение объектов заданной формы на изображении в мультимедийном стрелковом тренажере и определение их координат // Радиотехника. 2015. Вып. 182. С. 58–64.
Беляев А.В., Карташов В.М., Ф. А. Лутуангу Ф.А. Стробирование отметок движущихся объектов в системе обработки изображений со стационарной камерой // ScienceRise. 2017. №3. С. 66–71.
Sytnik O., Kartashov V. Methods and Algorithms for Technical Visionin Radar Introscopy. Chapter 13 // Optoelectronics in Machine Vision-Based Theories and Applications. 2018. Р. 373–391.
Ivanov M., Sergiyenko O., Tyrsa V., Mercorelli P., Kartashov V., Hernandez W., Sheiko S., Kolendovska M. Individual scans fusion in virtual knowledge base for navigation of mobile robotic group with 3D TVS // Proceedings of 44th Annual Conference of IEEE Industrial Electronics Society (IECON). 2018. Washington DC, USA. Р. 3187–3192.
Бондаренко А. Аппаратно-программная реализация мультиспектральной системы улучшенного видения / А. Бондаренко, М. Бондаренко // Современная электроника. 2017. №1. С. 32–37.
Ivanov M., Sergiyenko O., Mercorelli P., Hernandez W., Rodriguez Quinonez J.C., Katashov V., Kolend-ovska M., Iryna T. Effective informational entropy reduction in multi-robot systems based on real-time TVS // IEEE International Symposium on Industrial Electronics. 2019-June,8781209. Р. 1162–1167.
Oleksandr Sotnikov, Vladimir Kartashov, Oleksandr Tymochko, Oleg Sergiyenko, Vera Tyrsa, Paolo Mercorelli, Wendy Flores-Fuentes. Methods for Ensuring the Accuracy of Radiometric and Optoelectronic Navigation Systems of Flying Robots in a Developed Infrastructure. Chapter 16 // Machine Vision and Navigation. P.537–578. Editors: Sergiyenko, Oleg, Flores-Fuentes, Wendy, Mercorelli, Paolo.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).