A wireless power transmission system with the multistate transmitting subsystem

Authors

  • Д.В. Грецких
  • А.И. Лучанинов
  • А.В. Гомозов

DOI:

https://doi.org/10.30837/rt.2020.2.201.02

Keywords:

wireless power transfer, large-aperture rectenna, multi-position emitter system, rectification efficiency, acquisition efficiency, power acquisition circuit

Abstract

Features of a wireless power transmission (WPT) systems with the transmitting subsystem based on a focused multistate radiators (MSR) systems are considered.

The basic principles for constructing and managing such systems are described. Mathematical modeling of the field of the created focused MSR at the rectenna aperture is carried out. Based on the results obtained, a number of advantages of WPT systems built on the basis of MSR are distinguished in comparison with WPT systems built on the basis of single-position transmitting antennas. It is shown that from a practical point of view, the approach to the implementation of the transmitting subsystem of the WPT system based on the MSR is attractive, however, issues related to assessing the effectiveness of the large-aperture rectenna excited by a substantially non uniform field created by the MSR remain not clarified fully.

An approach to the analysis of large-aperture rectennas excited by a substantially non uniform field was developed, the rectenna modeling was carried out based on this approach, the radiating structure of this rectenna consisted of a system of parallel microstrip conductors, Schottky rectifier diodes were included in their ruptures at regular intervals. The choice of such a design of the radiating structure made it possible to realize a two-layer microstrip rectenna converting electromagnetic fields with circular polarization into direct current.

The receiving-rectifying elements transforming the field with vertical polarization were placed in the lower layer, and the receiving-rectifying elements transforming the field with horizontal polarization were placed in the upper layer. For a given rectenna excitation mode, an algorithm for constructing a DC power acquisition circuit was developed and its efficiency was evaluated.

References

Shinohara N. Wireless power transfer via radiowaves. John Wiley & Sons, 2014. 238 p.

Nikoletseas S., Yang Y., Georgiadis A. Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks // Springer International Publishing, 2016. 745 p.

Brown W.C. The history of power transmission by radio waves // IEEE Transactions on Microwave Theory and Techniques. 1984. Vol. 32. No. 9. P. 1230–1242.

Glaser P.E. An overview of the solar power satellite option // IEEE Transactions on Microwave Theory and Techniques. 1992. Vol. 40. No 6. P. 1230–1238.

Celeste A., Jeanty P., Pignolet G. Case study in Reunion island // Acta Astronautica. 2004. Vol. 54. P. 253–258.

Dickinson R.M. Power in the sky: Requirements for microwave wireless power beamers for powering high-altitude platforms // Microwave Magazine. 2013. Vol. 14. Issue 2. Р. 36–47.

Gretskih D.V., Gomozov A.V., Tsikalovskiy N.M., Sharapova E.V. Wireless radio power supply system for pilotless aircrafts // International Conference on Antenna Theory and Techniques: Dedicated to 95 Year Jubilee of Prof. Yakov S. Shifrin. 2015. P. 1–3.

Takabayashi N., Shinohara N., Mitani T., Furukawa M., Fujiwara T. Rectification Improvement With Flat-Topped Beams on 2.45-GHz Rectenna Arrays // IEEE Transactions on Microwave Theory and Techniques. 2019. Р. 1–13.

Шифрин Я.С., Лучанинов А.И. Антенны с нелинейными элементами // Справочник по антенной технике. Т.1.; под. ред. Л.Д. Бахраха и Е.Г. Зелкина. Москва: ИПРЖР. 1997. С. 207–235.

Шокало В.М., Лучанинов А.И., Рыбалко А.М., Грецких Д.В. Крупноапертупные антенны-выпрямители систем беспроводной передачи энергии микроволновым лучом // Харьков : Коллегиум. 2006. 308 с.

Zhu Z., Grover S., Krueger K., Moddel G. Optical rectenna solar cells using graphene geometric diodes // 37th IEEE Photovoltaic Specialists Conference. 2011. P. 20–22.

Pan Y., Rosamond M.C., McDonald A. at al. Design and performance of micro-rectenna arrays for thermal energy harvesting // 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). 2015. P. 1–2.

Wu Y., Linnartz J. , et al. Modeling of RF energy scavenging for batteryless wireless sensors with low input power personal indoor and mobile radio communications // PIMRC, IEEE 24th International Symposium. 2013. Р.527–531.

Nishimoto H., Kawahara Y., Asami T. Prototype implementation of ambient RF energy harvesting wireless sensor networks // IEEE Sensors Conference. 2010. Р. 1282 – 1287.

Lu X., Wang P., Niyato D. et al. Wireless Networks with RF Energy Harvesting: A Contemporary Survey // IEEE Communications Surveys and Tutorials. 2015. Vol. 17. No. 2. P. 757–789.

Zhang R., Ho C.K. MIMO broadcasting for simultaneous wireless information and power transfer // IEEE Transactions on Wireless Communications. 2013. Vol. 12. No. 5. P. 1989–2001.

Gretskih D.V., Luchaninov A.I., Vishniakova J.V., Katrich V.A., Nesterenko M.V. Electrodynamic model of a wireless power transmission system // XXIIIrd International Seminar / Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). 2018. P. 80–85.

Luchaninov A.I., Gretskih D.V., Gomozov A.V., Katrich V.A., Nesterenko M.V. Electrodynamic approach to designing WPT systems with accounting for non-system interactions // IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). 2019. Р. 107–111.

Gretskih D., Luchaninov A., Katrich V., Nesterenko M. Electrodynamic approach to designing wireless power transfer systems (Internal system processes) // Fourth International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). 2019.

Gretskih D., Luchaninov A., Gomozov А., Katrich V., Nesterenko M. External Parameters of Wireless Power Transmission Systems // XXIVth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. 2019. P. 117–121.

Грецких Д.В., Лихограй В.Г., Щербина А.А., Гомозов А.В. Внешние параметры систем беспроводной передачи энергии // Радиотехника. 2019. № 199. С. 59–66.

Gretskih D.V., Gomozov A.V., Luchaninov A.I., Nesterenko M.V. Mathematical model of large aperture rectenna lattice // XXIst International semi-nar/workshop on direct and inverse problems of electromagnetic and acoustic wave theory (DIPED). 2016. P. 92–94.

Gretskih D.V., Gomozov A.V., Katrich V.A., Luchaninov A.I., Nesterenko M.V., Penkin Y.М. Mathemati-cal model of large rectenna arrays for wireless energy transfer // Electromagnetic waves: Progress In Electromagnetics Research B. 2017. P. 77–91.

Gretskih D.V., Omarov M.A., Sukhomlinov D.V. Investigation into receiving-rectifying elements of EHF rectennas // IVth International conference on Antenna theory and techniques. 2003. P. 842–845.

Gutmann R.J., Borrego J.M. Power combining in an array of microwave power rectifiers // IEEE Transactions on Microwave Theory and Techniques. 1979. Vol. 27. No. 12. P. 958–968.

Ishizawa Y. Efficiency estimation of microwave power transmission antenna system // Electronics and Communications in Japan, Part 1. 2000. Vol. 83. No. 8. P. 94–104.

Miura T., Shinohara N., Matsumoto H. Experimental study of rectenna connection for microwave power transmission // Electronics and Communications in Japan, Part 2. 2001. Vol. 84, No. 2. P. 27–36.

How to Cite

Грецких, Д., Лучанинов, А., & Гомозов, А. (2020). A wireless power transmission system with the multistate transmitting subsystem. Radiotekhnika, 2(201), 38–51. https://doi.org/10.30837/rt.2020.2.201.02

Issue

Section

Articles