Adaptive algorithms for elimination of electromyographic noise in the signal of the electrocardiogram
Abstract
Adaptive filtering algorithms for removing electromyigraphic (EMG) noise from electrocardiographic signal (ECG) are considered. Statistical characteristics of suppressing noise, described by symmetric a-stable distribution that models EMG, are obtained for mean square error and signal-to-noise ratio using numerical simulations for test ECG signal, registered with a stampling rate of 500 Hz. It is shown that the proposed adaptive myriad filters provide a high quality of the EMG removal in the ECG with a possible realization of processing in real time.References
Subcommittee on Instrumentation Committee on Electrocardiography – American Heart Association, Recommendation for instruments in electrocardiography and vectorcardiography // IEEE Tr. BioMed. Eng.– 1967. – Vol.14. – P.60-68.
Kligfield, P., Gettes, L.S., Bailey, J.J. et al. Recommendations for the standardization and interpretation of the electrocardiogram: Part I: The electrocardiogram and its technology. A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology// J. Am. Coll. Cardiol. – 2007. – Vol.49. – P.1109-1127.
Nikias, C.L., Shao, M. Signal Processing with Alpha-Stable Distributions and Applications. New York: John Wiley & Sons, NY, USA, 1995.
Pander, T. An application of weighted myriad filter to suppression an impulsive type of noise in biomedical signals // TASK Quartarly. – 2004. – Vol.2, No.8. – P.199-216.
Pander, T. Impulsive Noise Filtering In Biomedical Signals With Application of New Myriad Filter // Biosignal' 2010: Proc. of the Int. Conf. – 2010. – P.94-101.
Gonzalez, J.G, Lau, D.L., Arce, G.R. Towards a general theory of robust nonlinear filtering: selection filters // IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP’97). – 1997. – P.3837-3840.
Gonzalez, J.G. Statistically-Efficient Filtering in Impulsive Environments: Weighted Myriad Filters // EURASIP Journal on Applied Signal Processing. – 2002. – Vol.1, No.1. – P.4-20.
Gonzalez, J.G, Arce. G.R. Optimality of the myriad filter in practical impulsive-noise environments // IEEE Trans. Sig. Proc. – 2001. – Vol.49, No.2. – P.438-441.
Carrillo, R.E., Aysal, T.C., Barner, K.E. A Generalized Cauchy Distribution Framework for Problems Requiring Robust Behavior // EURASIP Journal on Advances in Signal Processing. – 2010. – 19 p.
Kalluri, S., Arce, GR. Adaptive weighted myriad filter algorithms for robust signal processing in α-stable noise environments // IEEE Trans. Sig. Proc. – 1998. – Vol. 46, No.2. – P.322-334.
Тулякова, Н.О. Локально-адаптивные мириадные фильтры // Радиотехника. – 2014. – Вып.180. – С.50-59.
Тулякова, Н.О. Локально-адаптивная мириадная фильтрация сигнала электрокардиограммы // Радиотехника. – 2015. – Вып.180. – С.152-162.
Pearson, R.K., Neuvo, Y., Astola, J. The Class of Generalized Hampel Filters // Proc. of the 23td European Signal Processing Conference (EUSIPCO). – 2015. – P.2546-2550.
Тулякова, Н.О., Трофимчук А.Н., Стрижак А.Е. Алгоритмы мириадной фильтрации // Радиоэлектронные и компьютерные системы : науч.-техн. журнал Нац. аэрокосм. ун-та им. Н.Е. Жуковского "ХАИ". – Х., 2014. – № 4 (68). – С.76-83.
Лукин, В.В. Анализ поведения показателей локальной активности для нелинейных адаптивных фильтров // Радиофизика и электроника : сб. науч. тр. НАН Украины. Ин-т радиофизики и электроники им. А.Я. Усикова. – Х., 1998. – Вып.3., № 2. – С.80-89.
Christov, I., Daskalov, I. Filtering of electrocardiogram artifacts from the electrocardiogram // Medical Engineering & Physics. – 1999. – Vol.21. – P.731-736.
Bortolan, G., Christov, I., Simova, I., Dotsinsky, I. Noise processing in exercise ECG stress test for the analysis and the clinical characterization of QRS and T wave alternans // Biomed. Sign. Proc. Contr. – 2015. – Vol.18. – P.378-385.
Christov, I., Neycheva, T., Schmid, R., Stoyanov, T., Abächerli, R. Pseudo real-time low-pass filter in ECG, self-adjustable to the frequency spectra of the waves // Medical & Biological Engineering & Computing. – 2017. – P. 1-10.
Bortolan, G., Christov I. Dynamic Filtration of High-Frequency Noise in ECG Signal // Computing in Cardiology. – 2014. – Vol.41. – P.1089-1092.
Savitzky A., Golay M. Smoothing and differentiation of data by simplified least squares procedures // Anal. Chem. – 1964. – Vol.36. – P.1627-1639.
Тулякова Н.О., Трофимчук А.Н., Стрижак А.Е. Алгоритмы фильтрации электрокардиограммы с динамически изменяемым размером окна // Радиоэлектронные и компьютерные системы : науч.-техн. журнал Нац. аэрокосм. ун-та им. Н.Е. Жуковского "ХАИ". – Х., 2016. – № 2 (76). – С.4-14.
Gonzalez, J.G, Paredes, J.L., Arce, G.R. Zero-Order Statistics: A Mathematical Framework for the Processing and Characterization of Very Impulsive Signals // IEEE Trans. Sig. Proc. – 2006. – Vol.54, No.10. – P.3839-3851.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).