Estimation of accuracy of determining video camera translational velocity according to optical flow data

Authors

  • А.А. Молчанов
  • В.И. Кортунов

Abstract

Optical flow provides a tremendous opportunity for the navigation of small or micro unmanned aerial vehicles (UAVs) in the environments with a weak or absent GNSS signal. A method was proposed for determining the dynamic movement parameters based on optical flow algorithm for computing image units with weighting. The possibility of using the proposed approaches for estimating the translational velocity was given. The results of the UAV motion simulation on the underlying surface and the estimation accuracy of the determination of motion parameters using an optical sensor were shown. The experimental results confirm that the use of texture analysis increases the accuracy of the optical flow motion estimation parameters.

References

D. W. Casbeer, S. M. Li, R. W. Beard, T. W. McLain, and R. K. Mehra.Forest fire monitoring with multiple small UAVs // Proceedings of the American Control Conference, June 2005, pp. 3530–3535.

H. Chao and Y. Q. Chen, Remote Sensing and Actuation Using Unmanned Vehicles. Hoboken, New Jersey: Wiley-IEEE Press, 2012.

M. Srinivasan, S. Thurrowgood, and D. Soccol, Competent vision and navigation systems // IEEE Robotics & Automation Magazine, vol. 16, no. 3, pp. 59–71, 2009.

J. Chahl, M. V. Srinivasan, and S. W. Zhang. Landing strategies in honeybees and applications to uninhabited airborne vehicles // Journal of Robotics Research, vol. 23, no. 2, pp. 101–110, 2004.

Griffiths, J. Saunders, A. Curtis, B. Barber, T. McLain, and R. Beard. Maximizing miniature aerial vehicles: Obstacle and terrain avoidance for mavs // IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 34–43, 2006.

J. C. Zufferey and D. Floreano. Toward 30-gram autonomous indoor aircraft: Vision-based obstacle avoidance and altitude control // Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005, pp. 2594–2599.

G. Barrows, C. Neely, and K. Miller, Fixed and Flapping wing Aerodynamics for Micro Air Vehicle Application. AIAA, 2001, vol. 23, ch. Optic Flow Sensors for MAV Navigation, pp. 557–573.

Молчанов, А. А., Кортунов, В. И. Метод оценки движения оптического потока с взвешиванием измерений блоков изображения // Системи обробки інформації, ХУПС. – 2015. – № 3 (128). – С. 26-31.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2004, ISBN 0521540518.

Zhang, Z. A Flexible New Technique for Camera Calibration // IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 22, No. 11, 2000, pp. 1330–1334.

Heikkila, J., and O. Silven. A Four-step Camera Calibration Procedure with Implicit Image Correction // IEEE International Conference on Computer Vision and Pattern Recognition.1997

Richard Von Mises Theory of Flight. Courier Corporation, 1959. – 629 p.

B. K. P. Horn and B. G. Schunck. Determining optical flow: a retrospective // Artificial Intelligence, vol. 59, no. 1–2, pp. 81–87, 1993.

How to Cite

Молчанов, А., & Кортунов, В. (2017). Estimation of accuracy of determining video camera translational velocity according to optical flow data. Radiotekhnika, 1(188), 56–64. Retrieved from http://rt.nure.ua/article/view/210798

Issue

Section

Articles