Formation of information signs of unmanned aerial vehicles use efficiency
DOI:
https://doi.org/10.30837/rt.2019.4.199.09Keywords:
unmanned aerial vehicle, efficiency, time, control system.Abstract
The subject matter of the article is an unmanned aerial vehicle and methods for determining the effectiveness of its use. The goal of the work is formation of information signs of unmanned aerial vehicles use effectiveness. The following tasks were solved in the article: formation of information signs of the effectiveness of unmanned aerial vehicles using the mathematical apparatus of probability theory and mathematical statistics, the analysis of the survivability of unmanned aerial vehicles by developing a two-level unmanned aerial vehicle control system using a neural network control system. The following methods used are: methods of probability theory and mathematical statistics, neural network management methods. The following results were obtained: The generated informational signs of unmanned aerial vehicles use effectiveness with application of the mathematical apparatus of probability theory and mathematical statistics, which made it possible to obtain an analytical expression for determining the time of information transmission by an unmanned aerial vehicle, being the main criterion for the effectiveness of its use in a given situation. An analysis of the survivability of unmanned aerial vehicles by developing a two-level control system for an unmanned aerial vehicle using a neural network control system that allows you to increase the survivability and thereby the likelihood of completing a task by an unmanned aerial vehicle. It was determined that an essential feature of the UAV functioning processes is their randomness, which is caused by the incomplete certainty of the conditions in which these processes occur, as well as various random deviations and errors that occur during the collection of information, the generation of control signals and their execution. Thus, the result of UAV functioning is randomly and quantitatively characterized by the laws of distribution of parameters expressing this result.References
Кучеренко Ю. Ф., Кірвас В. В., Фоменко Д. В., Денисова С. В. Вдосконалення управління безпілотними літальними апаратами при веденні сучасних війн // Зб. наук. праць Харк. нац. ун-ту Повітря-них Сил. 2018. № 4 (58). С. 43–49.
Haridas V., Aa V. Longitudinal guidance of unmanned aerial vehicle using integral sliding mode control // Procedia Technology. 2016. No. 25. P. 36–43.
Kucherenko J. The conception of statutes on the creation automation control system operations command // Systems of arms and military equipment. 2014. No. 2 (38). Pp. 149–153.
Barnhart C., Belobaba P., Odoni A. R. Applications of operations research in the air transport industry // Transportation science. 2003. Vol. 37. No. 4. Pp. 368–391.
Бенкафо А. С., Лобатий А. А. Особливості застосування фільтрів Калмана-Бьюси в комплексах орієнтації і навігації // Доповіді БГУИР. 2013. № 5 (75). С. 67–71.
Shevchenko I., Tertyshnyi V., Koval, S. Designing a model of a decision support system based on a multi-aspect factographic search // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4. Issue 2 (88), Pp. 20–26, DOI: https://doi.org/ 10.15587/1729-4061.2017.108569
Бодянський Є. В., Тесленко Н. О., Дейнеко А. О. Еволюційна нейронна мережа з ядерними функціями активації й адаптивний алгоритм її навчання // Наук. праці. Комп’ютерні технології. 2011. Вип. 148. Т. 160. С. 53–58.
Юрков Н. К. Оцінка безпеки складних технічних систем // Надійність і якість складних систем. 2013. № 2. С. 15–21.
Que Q., Belkin M. Back to the Future: Radial Basis Function Networks Revisited // Appearing in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), Cadiz, Spain. JMLR: W&CP. 2016. Vol. 51. 13 p.
Горячев Н. В., Лысенко А. В., Граб И. Д., Юрков Н. К. Информационно-измерительный лабораторный комплекс исследования теплоотводов электрорадиоэлементов // Надежность и качество : тр. Междунар. симп. 2012. Т. 2. С. 239–240.
Затылкин А. В., Таньков Г. В., Бобров А. А. Индукционный виброметр для проведения амплитудно-частотного и модального анализа конструкций РЭС // Надежность и качество : тр. Междунар. симп. 2013. Т. 2. С. 44–48.
Бецков А. В., Прокопьев И. В. Анализ живучести беспилотного летательного аппарата // Надежность и качество сложных систем. 2014. № 2 (6). С. 3–6.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).