Definition of parameters readiness and channel capacity of millimeter wave range

Authors

  • А.А. Мерзликин
  • Д.С. Сальников
  • А.Н. Битченко
  • Н.В. Руженцев
  • А.И. Цопа

DOI:

https://doi.org/10.30837/rt.2019.4.199.05

Keywords:

subscriber access line, transport network, radio wave propagation conditions, availability ratio, precipitation rate, channel capacity, modulation and coding scheme.

Abstract

The paper is devoted to the problem of using the next generation 5G millimeter radio waves (MM DV) in wireless communication systems. The aim of the work is to clarify the calculation method and estimate the readiness parameters and performance of communication channels in the millimeter wavelength range when deploying 5G communication network segments in various climatic zones of Ukraine. The paper presents the model and practical results of estimating the budget of the communication line, on the basis of which the achievable distances between the transmitter and the receiver for various climatic zones of Ukraine are determined. A theoretical assessment of the achievable information transfer rates based on the Shannon communication channel capacity is given, and an estimate of the practically achievable data transfer rates for various segments of the information transmission network for IEEE 802.11ad standard equipment using various modulation and coding schemes (MCS) is given.

References

Nitsche T., Cordeiro C., Flores A. B., Knightly E. W., Perahia E. and Widmer J. C. IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi // IEEE Communications Magazine. 2014. Vol. 52. № 12. Р. 132–141.

Быстров Р.П., Петров А.В., Соколов А.В. Миллиметровые волны в системах связи // Журнал радиоэлектроники. 2000. №5.

Agapi Mesodiakaki, Andreas Kassler, Enrica Zola,Mattias Ferndahl,Tao Cai. Energy efficient line-of-sight millimeter wave small cell backhaul: 60, 70, 80 or 140 GHz // IEEE Transactions on Vehicular Technology. Vol. 66, nr 2. Р. 1810-1821.

Sooyoung Hur, Taejoon Kim, David J Love, James V Krogmeier, Timothy A. Thomas, and Amitava Ghosh. 2013. Millimeter Wave Beamforming for Wireless. Backhaul and Access in Small Cell Networks // IEEE Transactions on Communica- tions 61, 10 (2013), 4391 – 4403.

Shu Sun, George R. MacCartney Jr., Rappaport Theodore S. Millimeter-Wave Distance-Dependent Large-Scale Propagation Measurements and Path Loss Models for Outdoor and Indoor 5G Systems // 10th European Conference on Antennas and Propagation – Davos, Switzerland. April 2016. Р. 1-5.

Tsopa O.I., Strelnitskiy A.A. and Shokalo V.M. Approximate Model for Estimation of Efficiency and Noise Immunity of Branched Street and Corridor Wi-Fi and WiMAX Communication Channels // Tele-communication and Radio Engineering. Begell House, 2009. Vol. 68(17). Р. 1511-1528.

Tsopa O.I., Strelnitskiy A.A., Strelnitskiy A.E. and Shokalo V.M. Prediction model of energy security for the systems of subscriber radio access with branched street and corridor communications channels // Radioelectronics and Communications Systems. Allerton Press, Inc., 2011. Vol. 54, no. 2. Р. 61-67.

Мерзликин А.А., Цопа А.И. Оценка условий распространения сигнала миллиметрового диапазона волн. // Материалы 6-го Международного радиоэлектронного форума «Прикладная радиоэлектроника. Состояние и перспективы развития» (МРФ-2017). Харьков, 2017. С. 90-91.

Tsopa A. I. Methodical maintenance of radiometric measurements of atmosphere at millimeter waves range /

V. V. Pavlikov, N. V. Ruzhentsev, D. S. Salnikov, А. I. Tsopa, А. О. Merzlikin // Proc. of XIV International Conf. Modern problems of Radio Engineering, Telecommunications and Computer Science /TCSET’2018/. Lviv-Slavsko, 2018. P. 1-4.

ITU-R Rec. P.838-3. Specific attenuation model for rain for use in prediction methods.

ITU-R Rec. P.676-6, Approximate estimation of gaseous attenuation in the frequency range 1 – 350 GHz.

Boncho G. Bonev, Kliment N. Angelov and Emil S. Altimirski Study on Radio Link Availability in Millimeter Wave Range // World Academy of Science, Engineering and Technology, Vol:5 2011. Р.626-629.

Ákos Faragó, Péter Kántor, János Z. Bitó Rain Effects on 5G millimeter Wave ad-hoc Mesh Networks. Investigated with Different Rain Models // Periodica Polytechnica: Electrical Engineering and Computer Science. 2016. 60(1). Р. 44-50,

Molisch A. F. Wireless Communications. 2nd ed. New York, NY, USA: Wiley-IEEE, 2011.

Seybold J., Introduction to RF propagation, John Wiley & Sons Inc., Hoboken, New Jersey, 2005.

Kim J. Millimeter Wave Radio Propagation Characteristics / Chapter Book: Opportunities in 5G Networks:

A Research and Development Perspective. CRC Press, 2016. 577 p.

Rec. ITU-RP.1411-7. Propagation data and prediction methods for the planning of short-range outdoor radio communication systems and radio local area networks in the frequency range 300 MHz to 100GHz.

ITU-T Rec. G.827. Availability parameters and objectives for path elements of international constant bit-rate digital paths at or above the primary rate (1996).

ITU-T Rec. Y.1540. IP Packet Transfer and Availability Performance Parameters (2002).

Freeman R. L. Radio System Design for Telecommunications, John Wiley & Sons Inc., Hoboken, New Jersey, 2007.

IEEE Std. 802.11ad-2012. IEEE Standard for Information technology. Telecommunications and information exchange between systems. Local and metropolitan area networks-Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

How to Cite

Мерзликин, А., Сальников, Д., Битченко, А., Руженцев, Н., & Цопа, А. (2019). Definition of parameters readiness and channel capacity of millimeter wave range. Radiotekhnika, 4(199), 45–53. https://doi.org/10.30837/rt.2019.4.199.05

Issue

Section

Articles