High-frequency microwave diagnostics of of free and bound water content in biological objects

Authors

DOI:

https://doi.org/10.30837/rt.2019.4.199.01

Keywords:

biological object, dielectric constant, microwave non-destructive diagnostics, resonator transducer, coaxial aperture.

Abstract

Most biomaterial molecules are electrically neutral. Electrophysical properties of a biomaterial molecule are acquired when water molecules having a pronounced dipole moment bind to them. Therefore, the solution to the problem of determining the relationship of water with biological macromolecules and creation of methods for monitoring the state of water in biological objects is a step in the general problem of diagnosing their state.
The composition of biological macromolecules, proteins includes intramolecular water. This affects both the real and the imaginary part of the dielectric constant of biological objects. The study is based on the fact that water has the greatest effect on the dielectric constant of the media in which it is located. With complex molecules of a biological substance, water can have bonds various in nature. Therefore, there is a significant set of physical factors associated with obtaining information about the state of biological objects based on determining the amount and distribution of free and integrated water in macromolecules of biological substances using microwave sensors relative to biological objects in vivo and in vitro, as well as during external exposure to them.
The main ideas are based on the fundamental principles of radio physical methods for obtaining values of the real and imaginary parts of the dielectric constant in the frequency range of relaxation of macro-molecules of biological media with bound and free water.
Information on the content and changes in the distribution of free and bound water in biological objects makes it possible to diagnose their state. Microwave diagnostics of biological objects using resonator transducers with coaxial probe structures provide an opportunity for non-destructive analysis with millimeter and submillimeter spatial resolution. Analytical methods were used to study the nature of the interaction of electromagnetic fields created by coaxial apertures of various configurations with samples. Based on the results obtained, the directions for the implementation of microwave high-local diagnostics techniques are determined.

References

Nyfors E. Vainikainen P. Industrial Microwave Sensors. Artech House, Inc. 1989. 351 p.

Klein O., Donovan S., Dressel M. at all. Microwave cavity perturbation technique // International Journal of Infrared and Millimeter Waves, 1993. Vol. 14, № 12. Р. 2433–2517.

Chen L. F., Ong C. K., Neo P. C. at all. Microwave electronics: Measurement and Materials Characterization // John Wiley & Sons, Ltd., 2004. 537 p.

Гордиенко Ю. Е., Рябухин А. А. Вычисление комплексных резонансных частот СВЧ резонаторных датчиков апертурного типа // Радиоэлектроника и информатика. 2001. № 2. С. 4–7.

Gordienko Yu. Ye., Petrov V. V., Khammud F. M. Estimation of Numerical-Analytical Models of Microwave Cavity Detectors with a Coaxial Measuring Aperture // Telecommunications and Radio Engineering. 2006. Vol. 65,

№ 9-10. Р. 789-798.

Гордиенко Ю. Е., Кочержин А. И. Улучшение метрологических характеристик СВЧ резонаторных измерителей влажности сыпучих материалов // Радиотехника. 2001. № 120. С. 131–134.

Гордиенко Ю. Е., Хаммуд Ф. М. Оценка направлений оптимизации СВЧ резонаторных датчиков контроля влагосодержания порошковых материалов электронной технологии // Радиоэлектроника и информатика. 2004. № 2. С. 34–38.

Van Bladel J. G. Electromagnetic fields. John Wiley & Sons, 2007. Vol. 19. 1149 p.

Hyde M. W., Bogle A. E. and Havrilla M. J. Nondestructive characterization of PEC-backed materials using the combined measurements of a rectangular waveguide and coaxial probe // IEEE Microw. Wireless Compon. Lett. 2014. Vol. 24, No. 11. Р. 808–810.

Panchenko A. Yu. Modeling a small aperture resonator type microwave meter of substance parameters // Telecommunications and RadioEngineering. 1998. № 52(8). Р. 118–121. DOI: 10.1615/Tele-comRadEng.v52.i8.

Huang R., Zhang D. Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method // IEEE Trans. Instrum. Meas. 2008. Vol. 57, № 5. Р. 931–939. DOI: 10.1109/TIM.2007.913830.

Mingming Wen, Liu Ch., Panchenko A.Yu., Slipchenko N. I. Evaluation of influence of microwave radiation sensor in the form of an open end of the coaxial line on its metrological characteristics // Telecommunications and Radio Engineering. Vol. 74. № 15. Р. 1355–1366, 2015. DOI: 10.1615/TelecomRadEng.v74.i15.

Mashimo Satoru. Structures of water and primary alcohol studied by microwave dielectric analyses // J. Chem. Phys. 1991. Vol. 95, № 9. Р. 6257-6260.

Steinhauer D. E., Vlahacos C. P., Dutta S. K. at all. Quantitative imaging of sheet resistance with a scanning near-field microwave microscope // Appl. Phys. Lett. 1998. № 72. Р. 861–863.

Бондаренко И.Н., Мамедова Н.А., Панченко А.Ю., Светличная И.Н. Оценка осевой разрешающей способности СВЧ сенсора для исследований биологических объектов // Радиоэлектроника и информатика. 2018. № 4. Р. 4–11.

Авакян О. М. Фармакологическая регуляция функции адренорецепторов. Москва : Медицина, 1988. 256 с.

Щеголева Т. Ю. Функциональная система связей аденилатциклазного комплекса эритроцитов // Успехи современной биологии. 1997. Vol. 117. № 4. Р. 442-454,

Bondarenko I. N., Gordienko Yu. Ye., Larkin S. Yu. Systems of information signals shaping in cavity microwave microscopy // Proc. of 19th International Crimean Conference Microwave & Telecommunication Technology (CriMiCo'2009), art. no. 5293003. Р. 563-564.

Tai C. T. Dyadic Green's functions for a coaxial line // IEEE Trans. of Antennas and Propagation. 1983.

Vol. 48, № 2. Р. 355–358.

Ch. Lin, Bondarenko I. N., Panchenko A. Yu., Slipchenko N. I. Electrodynamic sensor for assessing transformations of the state of water in biological objects // Telecommunications and Radio Engineering. 2018. Vol. 77, № 12. Р.1103-1112. DOI: 10.1615/TelecomRadEng.v77.i12.80.

Gordienko Yu. Ye., Bondarenko I. N., Slipchenko N. I. Biological objects parameters meter based on microwave microscope with coaxial resonant sensor // Proc. of the 10-th International Conference “Modern problems of radio engineering, telecommunications and computer science” (TCSET 2010), Ukraine. Lviv-Slavske, Feb. 23-27, 2010. art. no. 5446176, р.137-138.

Bondarenko I. N., Gordienko Yu. Ye., Levchenko A. V. Submillimetric localization of microwave diagnostics and modification of objects of various nature // 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMV′2016), Kharkiv, Ukraine, 2016. № 7538014. DOI: 10.1109/MSMW.2016.7538014.

Bondarenko I. N., Vasiliev Yu. S., Prokaza A. M., Troitski S. I. Resonant measuring trasducers on the basis of typical cavity resonators // Proc. of 22nd International Crimean Conference Microwave & Telecommunication Technology (CriMiCo'2012), art. no. 6336098. Р. 568-569.

Bondarenko I. N., Galich A. V., Slipchenko N. I., Troitski S. I. Conical resonant transducer on the higher modes // Proc. of 22nd International Crimean Conference Microwave & Telecommunication Technology (CriMiCo'2012), art. no. 6336097, pp. 565-567.

Bondarenko I. N., Galich A. V. Measuring resonant transducers on the basis of microstrip structures // Telecommunications and Radio Engineering. 2015. Vol. 74, № 9. Р. 807 – 814. DOI: 10.1615/TelecomRadEng.v74.i9.60.

How to Cite

Бондаренко, И., Гордиенко, Ю., Нечипоренко, А., & Панченко, А. (2019). High-frequency microwave diagnostics of of free and bound water content in biological objects. Radiotekhnika, 4(199), 5–11. https://doi.org/10.30837/rt.2019.4.199.01

Issue

Section

Articles