Steganalysis method efficient for the hidden communication channel with low capacity

Authors

  • I.I. Bobok
  • A.A. Kobozeva

DOI:

https://doi.org/10.30837/rt.2019.3.198.02

Keywords:

steganalysis method, digital image, low capacity of the hidden communication channel, singular numbers, singular number gap, the Least Significant Bit method

Abstract

The Least Significant Bit (the LSB-method) remains one of the main steganalysis methods used nowadays for the hidden communication channel organization. One of the features of the current use of the LSB method is an organizing of the hidden communication channel with low capacity. Under such conditions, the vast majority of existing steganalysis methods is ineffective. This paper is dedicated to the development of a new steganalysis method for detection of additional information in digital images embedded by the least significant bit modification. The method is based on the perturbation theory and matrix analysis and effective under the low capacity of the hidden communication channel. This method is based on the analysis of the normalized gap of maximum singular numbers for non-intersecting blocks of an image matrix, obtained by its standard splitting. It is shown that conversion of a digital image from the lossless format to the lossy format with different quality factors will lead to a monotonous increase in the number of blocks for which the normalized gap of block’s maximum singular number increases with a decrease in the quality factor used in compression of the source image. This monotony will be broken in the case when the image originally stored in lossy format is being re-stored in lossy format. The conclusion made is the basis for the developed steganalysis method and the algorithm that implements it, which has polynomial complexity of degree 2. The proposed algorithm exceeds in efficiency the existing analogues when the embedding rate is less then 0.1 bits per pixel and effective for color and grayscale images. The conclusions are confirmed by the given results of a computational experiment, which have involved more than 5,000 digital images.

References

Karampidis K. A review of image steganalysis techniques for digital forensics / K. Karampidis, E. Kavallieratou, G. Papadourakis // Journal of Information Security and Applications. 2018. № 40. Рр. 217–235.

Saman Shojae Chaeikar. PSW statistical LSB image steganalysis / Saman Shojae Chaeikar, Mazdak Zamani, Azizah Bt Abdul Manaf, Akram M. Zeki // Multimedia Tools and Applications. 2018. Vol. 77, Iss. 1. Рp. 805–835.

Altaay A.A.J. An introduction to image steganography techniques / A.A.J. Altaay, S.B. Sahib, M.В. Zamani // Proceedings 2012 International Conference on Advanced Computer Science Applications and Technologies, ACSAT.

Li B. A survey on image steganography and steganalysis / B. Li, J. He, J. Huang, Y.Q. Shi // J. Inf. Hiding Multimedia Signal Process. 2011. No 2. Pp. 142–172.

Park T.H. Performance improvement of LSB-based steganalysis using bit-plane decomposition of images / T.H. Park, J.G. Han, Y.H. Moon, I.K. Eom // The Imaging Science Journal. 2016. No 64(5). Pp. 262–266.

Lerch-Hostalot D. LSB matching steganalysis based on patterns of pixel differences and random em-bedding / D.Lerch-Hostalot, D. Megias // Computers & Security. 2013. No 32. Pp.192–206.

Verma S. Relevance of steganalysis using DIH on LSB steganography / S. Verma, S. Sood, S.K. Ranade // International Journal of Advanced Research in Computer Science and Software Engineering. 2014. No 4(2). Pp. 835–838.

Xia Z. Steganalysis of LSB matching using differences between nonadjacent pixels / Z. Xia, X. Wang, X. Sun, Q.Liu, N.Xiong // Multimed Tools and Applications. 2016. No 75(4). Pp. 1947–62.

Lerch-Hostalot D. Unsupervised steganalysis based on artificial training sets / D. Lerch-Hostalot, D.Megías // Engineering Applications of Artifficial Intelligence. 2016. No 50. Pp. 45–59.

Juarez-Sandoval O. Compact image steganalysis for LSB-matching steganography / O. Juarez-Sandoval, M. Cedillo-Hernandez, G. Sanchez-Perez, K.Toscano-Medina, H. Perez-Meana, M.Nakano-Miyatake // In: Proceedings 2017 5th international workshop on biometrics and forensics (IWBF 2017). 2017. Pp. 1–6.

Zou D. Steganalysis based on Markov model of thresh-olded prediction-error image / D. Zou, Y.Q. Shi, W. Su, G.Xuan // 2006 IEEE international conference on multimedia and expo, ICME 2006 Proceedings, 2006. 2006. Pp. 1365–8.

Fridrich J. Steganalysis of content-adaptive steganography in spatial domain / J. Fridrich, J. Kodovský, V.Holub, M.Goljan // Lecture notes in computer science (including subseries on lecture notes in artificial intelligence lecture notes in bioinformatics (LNCS)). 2011. Vol. 6958. Pp. 102–17.

Ахмаметьева А.В. Стеганоанализ цифровых изображений, хранящихся в формате с потерями / А.В. Ахмаметьева // Захист інформації. 2016. Вип. 23. С.135-145.

Xiang-dong Chen. Detect LSB Steganography with Bit Plane Randomness Tests / Xiang-dong Chen, Feng Sun, Wei Sun // 6th World Congress on Intelligent Control and Automation, Dalian. 2006. Pp. 10306-10309.

Kobozeva A.A. General Principles of Integrity Checking of Digital Images and Application for Steganalysis / A.A. Kobozeva, I.I. Bobok, A.I. Garbuz // Transport and Telecommunication. 2016. Vol. 17, Iss. 2. Pp. 128-137.

Бобок И.И. Метод выявления изображений, пересохраненных в формат без потерь из формата с потерями // Математичне та комп’ютерне моделювання. 2017. Вип.16. С.5-14.

Деммель Д. Вычислительная линейная алгебра : теория и приложения / Пер. с англ. Х.Д. Икрамова. Москва : Мир, 2001. 430 с.

Кобозева А.А. Анализ информационной безопасности / А.А. Кобозева, В.А. Хорошко. Киев : ГУИКТ, 2009. 251 с.

Gloe T., Böhme R. The ‘Dresden Image Database’ for benchmarking digital image forensics. Proceedings of the 25th Symposium on Applied Computing (ACM SAC 2010). Sierre, 2010. Vol. 2, pp. 1585–1591.

Гонсалес Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс ; пер. с англ. П.А. Чочиа. Москва : Техносфера, 2006. 1070 с

Hsu Y.-F. Detecting image splicing using geometry invariants and camera characteristics consistency / Y.-F. Hsu , S.-F. Chang // Proceedings of the IEEE International Conference on Multimedia and Expo (ICME’06). Toronto, 2006, pp. 549-552.

NRCS Photo Gallery: [Електронний ресурс] // United States Department of Agriculture. Washington, USA. Electronic resource. Access mode: http://photogallery.nrcs.usda.gov (Дата обращения: 26.07.2012).

Chen C. JPEG Image Steganalysis Utilizing both Intrablock and Interblock Correlations / C. Chen, Y.Q. Shi // IEEE International Symposium on Circuits and Systems. Seattle, Washington, USA, 2008. Pp. 3029-3032.

Huang F. Calibration based universal JPEG steganalysis / F. Huang, J. Huang // Science in china series F: Information sciences. 2009. Vol. 52. No. 2. Pp. 260-268.

Pevny T. Steganalysis by subtractive pixel adjacency matrix / T. Pevny, P. Bas, J. Fridrich // IEEE Transactions on Information Forensics and Security. 2010. No. 2. Pp. 215-224.

Jinyang Su. Steganalysis using regional correlation and second-order Markov features / Su Jinyang, Zeng Xianting, Wang Lei // International Journal of Security and Its Applications. 2015. Vol. 9. № 1. Pp. 69-76.

B. Xue, X. Li, B. Li and Z. Guo. Steganalysis of LSB replacement for multivariate Gaussian covers // 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), Chengdu, 2015, pp. 836-840. doi: 10.1109/ChinaSIP.2015.7230522.

Q. Lin, J. Liu and Z. Guo. Local ternary pattern based on path integral for steganalysis // 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, 2016, pp. 2737-2741.

Downloads

How to Cite

Bobok, I., & Kobozeva, A. (2019). Steganalysis method efficient for the hidden communication channel with low capacity. Radiotekhnika, 3(198), 19–31. https://doi.org/10.30837/rt.2019.3.198.02

Issue

Section

Articles