Algebraic immunity of non-linear components of symmetric ciphers

Authors

  • О.О. Кузнецов
  • Ю.І. Горбенко
  • І.М. Білозерцев
  • А.В. Андрушкевич
  • О.П. Наріжний

Abstract

Methods for calculating the algebraic immunity of cryptographic Boolean functions and non-linear components (substitutions) of symmetric ciphers have been studied. The results of the comparative analysis of algebraic immunity of non-linear nodes of symmetric ciphers are given.

References

Alfred, J. Menezes, Paul C. van Oorschot, Scott, A. Vanstone. Handbook of Applied Cryptography – CRC Press, 1997. – 794 р.

Горбенко, І.Д., Горбенко, Ю.І. Прикладна криптологія. Теорія. Практика. Застосування: Підручник для вищих навч. закладів. – Харків : Форт, 2013. – 880 с.

Bart Preneel. Analysis and Design of Cryptographic Hash Functions. [Электронный ресурс] – Режим доступа:homes.esat.kuleuven.be/ ~preneel/phd_preneel_feb1993.pdf

Carlet, C. Vectorial Boolean functions for // Cambridge Univ. Press, Cambridge. – 95 p. [Электронный ресурс] – Режим доступа: www.math.univ-paris13.fr/~carlet/chap-vectorial-fcts-corr.pdf

Carlet, C. Boolean functions for cryptography and error correcting codes // Cambridge Univ. Press, Cambridge. – 2007. – 148 p. [Электронный ресурс] – Режим доступа: www1.spms.ntu.edu.sg/~kkhoongm/chap-fcts-Bool.pdf

Zhuo Zepeng, Zhang Weiguo On correlation properties of Boolean functions // Chinese Journal of Electronics. Jan, Vol.20, 2011, №1, 143-146 pp.

O’Connor, L. An analysis of a class of algorithms for S-box construction // J. Cryptology. -1994. – p. 133-151.

Clark J.A., Jacob J.L., Stepney S. The Design of S-Boxes by Simulated Annealing // New Generation Computing. – 2005. – 23(3). – p.219–231.

Кузнецов, А.А., Белозерцев, И.Н., Андрушкевич, А.В. Анализ и сравнительные исследования нелинейных узлов замены современных блочных симметричных шифров // Прикладная радиоэлектроника. – Харьков : ХНУРЭ, 2015. – Т. 14. №4. – С.343 – 350.

Courtois, N., Meier, W. Algebraic Attacks on Stream Ciphers with Linear Feedback, Eurocrypt 2003, LNCS 2656, Springer, 2003. – pp. 345-359.

Meier, W., Pasalic, E., Carle,t C. Algebraic Attacks and Decomposition of Boolean Functions, Eurocrypt 2004, LNCS 3027, Springer, 2004. – pp. 474-491.

Nicolas Courtois; Josef Pieprzyk (2002). Cryptanalysis of Block Ciphers with Overdefined Systems of Equations // LNCS. 2501: 267–287.

Gw´enol´e Ars, Jean-Charles Faug`ere. Algebraic Immunities of functions over finite fields. [Research Report] RR-5532, INRIA. 2005, pp.17.

Баев, В. В. Эффективные алгоритмы получения оценок алгебраической иммунности булевых функцій : дис. … канд. физ.-мат. наук : 01.01.09 / Баев Владимир Валерьевич; [Место защиты: Моск. гос. ун-т им. М.В. Ломоносова. Фак. вычислит. математики и кибернетики]. – Москва, 2008. – 101 с.

Аржанцев, И.В. Базисы Грёбнера и системы алгебраических уравнений. Летняя школа. Современная математика. Дубна, июль 2002. – Москва : МЦНМО, 2003. – 68 с.

Злобин, А.И., Соколова, О.В. Компьютерная алгебра в системе Sage. Учебное пособие. – Москва : МГТУ им. Баумана, 2011. – 55 с.

Faugère, J.-C. (June 1999). A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra. Elsevier Science. 139 (1): 61–88.

Faugère, J.-C. (July 2002). A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). Proceedings of the 2002 international symposium on Symbolic and algebraic computation (ISSAC). ACM Press: 75–83.

Massimiliano Sala, Teo Mora, Ludovic Perret, Shojiro Sakata, Carlo Traverso Gröbner Bases, Coding, and Cryptography. Springer-Verlag Berlin Heidelberg. – 426 p.

FIPS 197. National Institute of Standards and Technology. [Electronic resource]: Advanced Encryption Standard. – 2001. – Available at: http://www.nist.gov/aes.

ISO/IEC 18033-3. Information technology – Security techniques – Encryption algorithms, Part 3: Block ciphers, 80 p.

ДСТУ 7624:2014. Інформаційні технології. Криптографічний захист інфомації. Алгоритм симетричного блокового перетворення. – Київ : Мінекономрозвитку України, 2015. – 238 с.

ГОСТ Р 34.12-2015. Информационная технология. Криптографическая защита информации. Блочные шифры. – Москва : Стандартинформ, 2015. – 25с.

СТБ 34.101.31-2011. Информационные технологии и безопасность. Криптографические алгоритмы шифрования и контроля целостности. – Минск : Госстандарт, 2011. – 32 с.

ISO/IEC 10118-3:2004. Information technology – Security techniques – Hash-functions – Part 3: Dedicated hash-functions, 94 p.

Magma Computational Algebra System. Available at: http://magma.maths.usyd.edu.au/magma/

Nicolas Courtois, Alexander Klimov, Jacques Patarin, Adi Shamir. Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. Proceeding EUROCRYPT'00 Proceedings of the 19th international conference on Theory and application of cryptographic techniques. P. 392-407.

Nicolas Courtois, Josef Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. Advances in cryptology – ASIACRYPT 2002. Р.267-287.

Andrey Pyshkin. Algebraic Cryptanalysis of Block Ciphers Using Grobner Bases. Dissertation zur Erlangung des Grades Doktor rerum naturalium. Technischen Universit¨at Darmstadt. – Darmstadt, 2008, 118 р.

How to Cite

Кузнецов, О., Горбенко, Ю., Білозерцев, І., Андрушкевич, А., & Наріжний, О. (2017). Algebraic immunity of non-linear components of symmetric ciphers. Radiotekhnika, 2(189), 47–58. Retrieved from http://rt.nure.ua/article/view/183311

Issue

Section

Articles