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Вступ 

Розвиток сучасних біомедичних систем вимагає накопичення експериментальних даних, 

що дозволяють підтвердити працездатність нових алгоритмів та апаратних рішень. Теорети-

чні моделі не враховують усі реальні чинники, тоді як реальні вимірювання відображають 

вплив зовнішніх чинників і технологічних обмежень, які неможливо врахувати повністю при 

побудові моделі. 

Особливе значення мають дослідження, спрямовані на отримання кількісних характери-

стик вузлів системи, оскільки саме вони забезпечують базу для подальшої оптимізації конс-

трукцій та алгоритмів обробки даних. Експериментальні дані дозволяють оцінити стабіль-

ність роботи, рівень завадостійкості, відтворюваність результатів і визначити напрямки вдо-

сконалення. 

Дана робота є логічним продовженням попередніх праць у напрямку створення навіга-

ційних систем на базі фреймворку ARCore [1–3]. Метою представленої роботи є демонстра-

ція результатів експериментальних досліджень ефективності вимірювання відстані за допо-

могою смартфону в умовах низького освітлення. 

Опис умов експерименту 

Експериментальні дослідження проводилися в умовах затемненого приміщення з конт-

рольованими параметрами освітлення. У якості тестового пристрою використовувався смар-

тфон POCO X5 Pro із попередньо встановленим прототипом мобільного застосунку, розроб-

леного для оцінки глибини сцени на основі ARCore. Для забезпечення точного вимірювання 

відстані та фіксації умов експерименту додатково використовувалися фотометр Екотензор-03 

та лазерний далекомір INKERSI KE50, що був еталоном значень відстані [4, 5], рис. 1. 
 

 

Рис. 1. Використане у експерименті обладнання 
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Для імітації типових об'єктів реального світу було обрано три цілі, що відрізняються за 

структурою та щільністю текстур, рис. 2. Кожна з них була надрукована на аркуші формату 

А4 та закріплена на білій освітленій стіні. Ціль № 1 – шахова дошка з великою сіткою, яка 

генерує обмежену кількість ключових точок, проте легко розпізнається навіть за слабкого 

освітлення або на значній відстані. Мішень № 2 – сітка з вищою щільністю клітинок, що  

формує більшу кількість ключових точок з підвищеною деталізацією. Мішень №3 – QR-код, 

який містить численні дрібні графічні елементи, здатні створювати високу концентрацію 

ключових точок, але водночас є більш чутливим до зниження якості зображення та освітле-

ності сцени [6–8]. 

 

 

Рис. 2. Цілі, що імітують об’єкти з різною щільністю ключових точок 

 

Така комбінація мішеней дозволяє змоделювати типові сценарії взаємодії користувача з 

реальними об’єктами: від простих із чіткою геометрією до складних із насиченою текстур-

ною структурою. 

Процедура вимірювання здійснювалася в умовах фіксованої геометрії сцени та контро-

льованого освітлення. Джерело світла розміщувалося на визначених відстанях від мішеней у 

межах від 1 до 4 метрів з кроком у 1 метр, причому відстань встановлювалася за допомогою 

лазерного далекоміра. На кожному етапі експерименту проводилося по три вимірювання від-

стані до кожної цілей за допомогою мобільного застосунку, рис. 3. 

Після завершення циклу з трьох вимірів рівень освітленості змінювався шляхом зни-

ження напруги на джерелі світла. В експерименті використовувалася фара з лампою розжа-

рювання. 

Для забезпечення статистичної надійності процес повторювався тричі в однакових умо-

вах, тобто загалом на кожному рівні освітленості збиралося по 9 значень: по три для кожної 

мішені. Така методика дозволила отримати порівнювані дані для різних рівнів освітленості 

на однаковій дистанцій. 

Оцінка отриманих результатів 

За підсумками експериментальних вимірювань було сформовано структурований набір 

даних, що містить усі ключові параметри, необхідні для подальшого аналізу точності систе-

ми. До таблиці увійшли такі поля: Distance laser, metr – еталонна відстань, визначена за  

допомогою лазерного далекоміра; Illumination, lux – рівень освітленості в момент вимірю-

вання, зафіксований фотометром; Distance AR x.y, metr – відстань, розрахована за допомогою 

системи ARCore, де x позначає номер цілі (від 1 до 3), а y порядковий номер вимірювання  

(від 1 до 3) у межах одного рівня освітленості. –1 означає що не вдалося отримати дані, або 

занадто велике значення, щоб бути реальною відстанню. Отримані результати наведено у 

табл. 1. 
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Рис. 3. Експериментальна установка 

 

Таблиця 1 

Отримані експериментальні дані 

Distance 

laser, 

metr 

Distance 

AR 1.1, 

metr 

Distance 

AR 1.2, 

metr 

Distance 

AR 1.3, 

metr 

Distance 

AR 2.1, 

metr 

Distance 

AR 2.2, 

metr 

Distance 

AR 2.3, 

metr 

Distance 

AR 3.1, 

metr 

Distance 

AR 3.2, 

metr 

Distance 

AR 3.3, 

metr 

Illumi- 

nation, lux 

4,00 3,77 3,74 3,75 3,86 3,79 3,82 4,52 3,80 3,79 91,00 

3,04 3,97 3,91 4,05 3,99 4,01 3,50 22,00 3,43 3,72 91,00 

2,05 1,98 1,84 1,87 2,06 1,98 2,01 2,02 2,02 2,02 91,00 

1,02 0,94 0,94 0,96 1,06 1,08 1,10 0,99 1,00 1,00 91,00 

4,00 3,80 3,84 3,84 3,80 3,84 3,84 3,83 3,79 3,82 68,80 

3,04 4,47 4,32 4,30 6,04 4,29 4,19 4,25 4,15 4,04 68,80 

2,05 2,03 2,04 2,03 2,03 2,04 2,07 2,03 2,07 2,07 68,80 

1,02 0,97 0,95 0,96 0,95 0,96 0,96 0,96 0,95 0,95 68,80 

4,00 4,03 3,83 3,80 3,83 3,86 3,86 3,43 3,86 3,78 50,00 

3,04 2,93 2,94 3,03 2,93 2,95 2,97 2,93 2,57 2,73 50,00 

2,05 1,96 1,99 2,03 1,99 1,99 2,04 2,01 2,02 2,03 50,00 

1,02 0,99 0,98 1,00 1,02 1,01 1,02 1,02 1,01 1,01 50,00 

4,00 3,83 3,59 3,89 4,68 3,58 3,97 4,53 3,63 3,74 27,60 

3,04 2,64 2,64 2,58 2,58 2,59 2,81 2,63 2,68 2,70 27,60 

2,05 1,85 1,82 1,79 1,74 1,97 1,76 1,78 1,81 1,79 27,60 

1,02 0,93 0,92 0,97 1,08 1,04 1,05 0,91 0,91 1,14 27,60 

4,00 3,53 3,73 3,58 3,41 3,53 3,69 3,26 3,47 5,30 7,03 

3,04 0,80 11,00 2,95 2,83 3,10 2,89 3,00 3,04 2,89 7,03 

2,05 11,00 0,00 9,05 0,00 2,00 12,00 0,00 1,99 2,62 7,03 

1,02 0,94 0,94 0,96 0,92 0,96 0,93 0,91 0,91 0,91 7,03 

4,00 0,00 20,09 1,68 2,18 1,79 1,68 1,74 1,57 1,62 5,85 

3,04 3,84 3,49 3,91 3,43 3,45 4,17 3,56 4,42 5,39 5,85 

2,05 1,62 1,55 1,67 1,86 1,78 2,03 1,88 1,88 2,08 5,85 

1,02 0,92 0,87 0,89 0,95 0,89 0,90 0,93 0,92 0,90 5,85 

4,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 3,17 

3,04 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 3,17 

2,05 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 3,17 

1,02 0,93 0,95 0,97 0,96 0,96 0,99 0,96 0,94 0,98 3,17 
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Для кожного вимірювання було обчислено абсолютне відхилення між відстанню, отри-

маною за допомогою ARCore, та еталонною відстанню, визначеною лазерним далекоміром. 

Усі отримані значення були згруповані відповідно до цілі та дистанції, після чого розрахова-

но середнє відхилення та побудовано візуалізацію результатів у вигляді чотирьох окремих 

графіків – по одному для кожної фіксованої відстані, рис. 4. 

 

 
Рис. 4. Графіки відхилення на різній дистанції 

 

При відстані 1.02 м система демонструє стабільну роботу в усьому діапазоні освітленос-

ті, з відхиленнями, що не перевищують 7,5 %. Це значення було визначено як максимальний 

рівень похибки при вимірюванні відстані в умовах денного освітлення. На відстані 2.05 м 

вже спостерігається чітка тенденція до зростання похибок при освітленості нижче 20 лк. Ще 

більш критична ситуація спостерігається на відстанях 3.04 і 4.00 м: при освітленості нижче 

30–40 лк значна частина вимірювань демонструє нестабільність або повний зрив глибини  

система повертає завідомо хибні значення (умовно позначені як 10 м), що вказує на втрату 

коректної оцінки просторової сцени. У поодиноких випадках нестабільність фіксується  

навіть при помірному освітленні (до 60 лк), що свідчить про наявність граничного порогу, 

нижче якого система працює ненадійно. 

Результати експерименту свідчать про виражену залежність точності роботи ARCore від 

рівня освітлення. Зниження освітленості безпосередньо впливає на якість формування карти 

глибини, що призводить до системних помилок у вимірюванні, особливо на відстанях понад 

2 м [9]. 

Для підвищення ефективності вимірів, логічно витікає гіпотеза, що усереднення або  

використання медіанного значення з декількох незалежних вимірів у межах однієї сцени  

може знизити похибку, зумовлену локальними артефактами карти глибини або поодинокими 

вибросами в оцінці ключових точок, рис. 5. 
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Рис. 5. Оцінка ефективності фільтрації 

 

Для перевірки цієї гіпотези у рамках кожного циклу вимірювань було розраховано два 

згладжених показники: середнє та медіанне значення відстані, отримані з трьох паралельних 

вимірів до кожної з мішеней за однакових умов (фіксована відстань та рівень освітленості). 

Після цього для кожного із зазначених показників обчислювалося абсолютне відхилення від 

еталонної відстані, визначеної лазерним далекоміром. Отримані результати дозволили порів-

няти вплив типу згладжування на точність вимірювання, а також виявити критичні умови, за 

яких похибка перестає компенсуватися навіть після обробки кількох кадрів. 

Результати аналізу підтверджують доцільність використання згладжування як методу 

підвищення надійності системи ARCore. Зокрема, медіанне значення продемонструвало 

кращу стійкість до поодиноких збоїв: у випадках, коли одне з трьох вимірів було суттєво 

зміщене або помилкове, медіана дозволяла зменшити вплив цього викиду на фінальний  

результат. Усереднення також покращувало результати в умовах помірного освітлення,  

проте було чутливим до окремих відхилень. 

Дискусійні положення 

Отримані результати експериментальних досліджень свідчать, що точність та надійність 

визначення відстані із використанням ARCore істотно залежать від рівня освітленості сцени 

та текстурних характеристик об’єкта. За умов достатнього рівня світла система забезпечує 

похибку в межах допустимих значень, проте зниження освітленості нижче 30 – 40 лк призво-

дить до помітного зростання похибки та у ряді випадків  до зриву побудови карти глибини 

навіть на відносно малих дистанціях. Використання алгоритмів згладжування на основі  

кількох послідовних вимірювань частково підвищує стабільність отриманих даних, зокрема 

при застосуванні медіанного значення, однак не усуває базової залежності системи від умов 

освітлення. 

Для порівняння, у природних денних умовах рівень освітленості становить у середньому 

10 000 – 25 000 лк при сонячній погоді та близько 1 000 – 2 000 лк за похмурої погоди, що в 
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десятки й сотні разів перевищує порогові значення, за яких у проведених експериментах спо-

стерігалася деградація роботи системи [10, 11]. Цей контраст пояснює відсутність значних 

похибок у більшості попередніх досліджень, де експерименти виконувалися за умов належ-

ного освітлення. 

Зокрема, у роботі «Accuracy and Usability of Smartphone-Based Distance Estimation» та 

інших [12–15], було підтверджено стабільність результатів для низки методів визначення  

відстані за умов достатнього денного освітлення. Отримані дані доповнюють ці висновки, 

демонструючи межі застосовності ARCore в умовах низької освітленості та підкреслюючи 

необхідність використання додаткових алгоритмічних або апаратних механізмів компенсації 

для практичного застосування у навігаційних системах на основі технологій доповненої  

реальності. 

Додатково було проведено порівняння ефективності вимірювання відстані між тестовим 

застосунком, реалізованим на базі ARCore, та програмою Лінійка для iPhone, що використо-

вує ARKit. Умови досліду відповідали типовому денному освітленню, і результати показали 

похибку вимірювання на рівні не більше 1. Обидва фреймворки продемонстрували порів-

няльний рівень точності та ефективності, що підтверджує їхню придатність до використання 

у прикладних завданнях просторової навігації. 

Висновки 

Представлено результати експериментальних досліджень ефективності вимірювання  

відстані за допомогою фреймворку ARCore в умовах низької освітленості. Аналіз показав, 

що система здатна забезпечувати прийнятну точність при освітленості понад 60 лк та на від-

станях до 2 м, проте за зниження рівня освітленості спостерігається суттєве зростання похи-

бки, а в окремих випадках – повний зрив побудови карти глибини. Використання методів 

згладжування (середнє та медіанне значення) дозволяє частково зменшити нестабільність  

результатів, однак не усуває фундаментальної залежності технології від умов освітлення. 

Отримані дані логічно узгоджуються з попередніми роботами, що підтвердили високу 

ефективність аналогічних систем за умов стандартного денного освітлення. Наше дослі-

дження доповнює наявну наукову базу, визначаючи граничні умови застосування ARCore у 

реальних сценаріях із низьким рівнем освітленості. 

Практична значущість роботи полягає у формуванні чітких вимог до апаратних та алго-

ритмічних засобів компенсації, необхідних для створення навігаційних рішень на базі техно-

логій доповненої реальності. Такі рішення мають забезпечувати стабільну роботу в умовах 

змінного освітлення та мінімальне когнітивне навантаження для користувача. Отримані  

результати можуть бути використані у розробці тифлотехнічних систем, зокрема персоналі-

зованих навігаційних помічників для осіб з порушенням зору. 
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