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Вступ 

Сучасні веб-ресурси та серверні системи функціонують у середовищах, що характери-

зуються високою динамікою змін, широким застосуванням мікросервісної архітектури, кон-

тейнеризації, оркестрації та хмарних обчислень [1–4]. Популяризація контейнерних техноло-

гій, зокрема Kubernetes, зумовила появу нових вимог до забезпечення кібербезпеки, особливо 

щодо захисту трафіку на рівні HTTP(S)-запитів. В умовах горизонтального масштабування, 

динамічного створення/знищення контейнерів та автоматизованого керування навантажен-

ням традиційні методи захисту втрачають ефективність [5–8]. Одним із найбільш загрозли-

вих і поширених класів атак у веб-середовищі залишаються ін’єкційні атаки: SQL Injection, 

Cross-Site Scripting та Command Injection. У таких умовах традиційні засоби виявлення атак, 

зокрема сигнатурні WAF-рішення, демонструють обмежену ефективність у протидії 

ін’єкційним атакам через їхню варіативність, контекстну залежність та можливість мо-

дифікації обхідними техніками [9–10].  

Запропонована у поданому тексті інформаційна технологія забезпечує: високоточну кла-

сифікацію HTTP(S)-запитів; адаптивне прийняття рішень на основі ризику; низьку  

затримку обробки в режимі реального часу; автоматичне масштабування та самооновлення 

ML-моделі. 

Метою роботи є розроблення та експериментальна оцінка адаптивної ML-орієнтованої 

інформаційної технології для класифікації та блокування ін’єкційних атак у контейнеризова-

них веб-системах, що забезпечує високоточне виявлення шкідливих HTTP(S)-запитів, низьку 

затримку обробки та підтримку самооновлення моделі в MLOps-конвеєрі. 

1. Інформаційна технологія ML-WAF для класифікації та блокування  

            ін’єкційних атак 

Концептуальна модель визначає логічну структуру ІТ, ключові етапи обробки веб-

запитів і взаємодію модулів у процесі виявлення та блокування ін’єкційних атак. Тоді кон-

веєр обробки задається композицією функцій 

𝑟𝑜𝑢𝑡 = 𝑓𝑛 ∘ 𝑓𝑛 − 1 ∘ ⋯ ∘ 𝑓1(𝑟𝑖𝑛),     (1) 

де 𝑟𝑖𝑛  − вхідний HTTP(S)-запит, 𝑓𝑖 – функціональний обробник (TLS-термінація, ML-фільтр, 

маршрутизатор), 𝑟𝑜𝑢𝑡 – відповідь після проходження всіх етапів обробки.  

ML-компонента обчислює ризик 

𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒 = 𝑔(𝑥);      (2) 

де 𝑥 – ознаковий вектор, сформований за TF/IDF та збагаченими ознаками. 

Реакція визначається порогами 𝑇𝑚𝑖𝑑 та 𝑇ℎ𝑖𝑔ℎ): 

𝑑 = {

𝐴𝐿𝐿𝑂𝑊,    𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒 < 𝑇𝑚𝑖𝑑

𝑆𝐴𝑁𝐷𝐵𝑂𝑋,   𝑇𝑚𝑖𝑑 ≤ 𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒 < 𝑇ℎ𝑖𝑔ℎ

𝐵𝐿𝑂𝐶𝐾,   ℎ𝑖𝑔ℎ𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒 ≥ 𝑇ℎ𝑖𝑔ℎ

    (3) 

Ця політика є гнучкою та адаптується залежно від навантаження і контексту. 

Структурна схема технології визначає логічно впорядковану сукупність модулів та 

підсистем, що реалізують функціональне наповнення механізму виявлення та блокування 
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ін’єкційних атак у контейнеризованому середовищі і демонструє горизонтально організова-

ний, модульний стек компонентів, які виконують послідовні етапи обробки запиту та гене-

рують відповідні рішення щодо безпеки. Модульність забезпечує можливість незалежного 

масштабування та оновлення окремих компонентів, що є ключовою вимогою для Kubernetes-

орієнтованих рішень. У верхній частині моделі (рис. 1, а) розташовано Ingress Layer, який 

відповідає за перехоплення, аналіз і первинну маршрутизацію трафіку. Normalization Module 

виконує лінгвістичну та структурну підготовку запиту. Наступні блоки формують ML-тракт: 

модуль витягання ознак та ML-WAF Service з KNN-класифікацією.  

Результати аналізу передаються до Policy Engine, який визначає остаточне рішення щодо  

обробки запиту. Нижня частина схеми відповідає за життєвий цикл рішення: обробка 

backend-додатком, фіксація інформації у журналах, передача метрик у систему моніторингу 

та участь у самооновленні моделі через MLOps Pipeline. 

Функціональна схема відображає динамічну логіку роботи інформаційної технології, 

тобто спосіб, у який система змінює стан, передає дані та приймає рішення в реальному часі. 

На відміну від структурної схеми, що демонструє взаємне розташування компонентів, 

функціональна схема зосереджується на послідовності дій, тригерах переходів і функціо-

нальних обробниках, які формують повний сценарій обробки HTTP(S)-запиту. Як показано 

на рис. 1, б, робота технології складається з 9 функціональних етапів, що утворюють 

наскрізний конвеєр безпеки.  
 

 

 
а – структурна схема технології б – функціональна схема технології 

Рис. 1. Моделі компонентів технології ML-WAF 
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Функціональна схема визначає як дані рухаються, які операції виконує система, коли і 

чому приймаються рішення, та які дані впливають на самооновлення моделі. Короткий опис 

етапів, що складають логіку роботи технології: 

1) Приймання HTTP(S)-запиту. У процесі приймання запиту проводиться термінація TLS 

(за наявності), початкова валідація структури запиту, а також застосування базових правил 

безпеки, спрямованих на фільтрацію некоректних або очевидно шкідливих запитів. 

2) Нормалізація та обробка запиту. Завдяки цьому формуються передбачувані, узгоджені 

текстові одиниці, які можуть бути оброблені модулями формування ознак. 

3) Формування ознак (Feature Extraction). Система створює багатовимірний ознаковий 

опис запиту. На цьому кроці виконується TF/IDF-векторизація текстових компонентів. Сукуп-

ність TF/IDF-вектора та збагачених ознак створює комплексний ознаковий простір, що точно 

відображає як текстовий зміст запиту, так і його структурну форму. 

4) Класифікація запиту ML-моделлю. Результатом класифікації є: визначений клас  

(наприклад: normal, SQLi, XSS, Command Injection); числова оцінка ризику (risk_score), яка 

показує ступінь небезпеки запиту. 

5) Прийняття рішення (Policy Engine). На основі значення risk_score, отриманого від  

ML-модуля, Policy Engine порівнює його із порогами 𝑇𝑚𝑖𝑑 та 𝑇ℎ𝑖𝑔ℎ , які визначають межі між 

низьким, середнім та високим рівнями загрози. У залежності від співвідношення risk_score та 

порогів застосовується одне з трьох рішень: ALLOW – запит вважається безпечним та пере-

дається у backend; SANDBOX – запит є підозрілим, тому виконується у відокремленому  

середовищі або передається у додаткові модулі валідації; BLOCK – запит однозначно іденти-

фікується як атакуючий, і система повертає клієнту відповідь із забороною доступу (напри-

клад, HTTP 403). 

6) Передача запиту у backend-додаток. Якщо прийняте рішення має тип ALLOW, запит 

потрапляє у backend-додаток або мікросервісну логіку, де виконується відповідна бізнес-

функціональність. Таким чином, ML-WAF виступає фільтром між зовнішнім трафіком та  

ядром прикладної системи, захищаючи останню від шкідливого впливу. 

7) Блокування або ізоляція (Sandbox Processing). Якщо активовано режим SANDBOX, 

запит надходить у спеціалізоване ізольоване середовище для безпечного виконання або дета-

льного аналізу. 

8) Логування, журналювання та моніторинг. Формуються метрики продуктивності та 

стабільності, які передаються у Prometheus та візуалізуються за допомогою Grafana. Це  

забезпечує можливість: аналізу шкідливої активності; дослідження аномалій у трафіку; оцін-

ки якості ML-моделі в режимі експлуатації.  

9) MLOps-конвеєр адаптації моделі. Журнали та метрики передаються у модуль підгото-

вки даних, де формуються нові вибірки для перенавчання моделі. Далі модель проходить 

процедури тренування, тестування, перевірки точності та CI/CD деплоймент у кластер 

Kubernetes. Це забезпечує безперервну адаптацію технології до нових варіантів атак та дає 

змогу підтримувати високий рівень захисту протягом всього життєвого циклу системи. 

Інформаційно-логічна модель визначає структуру даних, їх взаємозв’язки та інформацій-

ні потоки, що виникають у процесі функціонування інформаційної технології ML-WAF.  

На відміну від структурної та функціональної схем, які фокусуються відповідно на компоне-

нтній та процесній організації системи, інформаційно-логічна модель відображає сутності,  

інформаційні атрибути та логіку взаємодії даних, що забезпечують роботу механізмів вияв-

лення атак, класифікації запитів, прийняття рішень і самооновлення моделі. 

У межах інформаційної технології обробляються різні типи інформаційних об’єктів – від 

вихідних HTTP-запитів до ознакових векторів, класифікаційних результатів, рішень політик 

та ML-моделей. Сукупність таких сутностей та їх структурованих описів наведено у табл. 1. 
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Таблиця 1 

Основні інформаційні сутності та їх атрибути 

Сутність Опис функціонального призначення та атрибутів 

HttpRequest 
Базова сутність, що містить method, URL, headers, body, IP-джерело, timestamp.  

Є вхідною одиницею всієї технології. 

NormalizedRequest 
Версія запиту після очищення та канонізації. Містить структуровані параметри, очищені 

заголовки, декодовані значення. 

FeatureVector 
Вектор ознак, що формується на основі TF/IDF-представлення та enriched-features: 

довжини, ентропії, структурних та контекстних ознак. 

MLModel (KNN) 
Містить k, набір тренувальних векторів, метрику відстані, версію моделі. Забезпечує 

класифікацію та обчислення risk_score. 

ClassificationResult 
Містить label (клас), risk_score, посилання на модель, версію моделі  

та часову мітку класифікації. 

Decision 
Описує реакцію Policy Engine: action ∈ {ALLOW, SANDBOX, BLOCK}, причину,  

рівень ризику, порівняння з порогами Tmid, Thigh. 

BackendResponse 
Інформаційний об’єкт, що представляє відповідь backend-додатка на безпечний запит 

або блокування при небезпеці. 

LogRecord 
Журнал дій: запит, класифікація, рішення, час обробки, метрики, IP-джерело,  

версія моделі. Використовується SIEM або monitoring stack. 

MetricsRecord 
Значення latency, throughput, error rates, FPR/FNR. Забезпечує телеметрію та діагностику 

технічної роботи ML-WAF. 

TrainingDataset 
Сукупність FeatureVector та відповідних міток, сформованих на основі LogRecord  

і ручного аналізу фахівців. 

RetrainedMLModel Нова версія ML-моделі, що проходить валідацію (F1) та деплоймент через MLOps. 

 

Початковою сутністю, яка ініціює усі інформаційні процеси, є HttpRequest – вхідний 

HTTP(S)-запит, що містить усю первинну інформацію від клієнта. Після проходження етапу 

нормалізації формується NormalizedRequest, який є стандартизованою версією початкових 

даних і виступає основою для побудови ознакового простору. Така нормалізація усуває 

обфускації, що дозволяє гарантувати коректність подальшого машинного аналізу. 

На наступному етапі формується FeatureVector, який складається з кількох груп ознак: 

текстових TF/IDF-компонентів, структурних ознак (наприклад, кількість параметрів, довжи-

на запиту, ентропія), а також контекстних характеристик, що відображають схожість до 

шкідливих шаблонів. Цей комплекс ознак передається до ML-модуля, де використовується 

MLModel (KNN). Модель містить тренувальні вектори та правила визначення найближчих 

сусідів, що забезпечує класифікацію. 

Результатом роботи моделі є сутність ClassificationResult, яка включає клас запросу та 

обчислений risk_score – числову характеристику небезпечності. На цій основі Policy Engine 

формує сутність Decision, яка визначає реакцію: пропуск, блокування або ізоляцію запиту. 

Надалі Decision впливає на формування BackendResponse, яка може бути як повноправною 

відповіддю backend-сервісу, так і повідомленням про блокування. 

Для забезпечення повного контролю безпеки та можливості аудиту кожна операція 

фіксується у вигляді сутності LogRecord. Вона включає як власне результат класифікації та 

рішення, так і додаткові метрики. Зібрані журнали формують основу для побудови 

TrainingDataset, який використовується у MLOps-конвеєрі для створення нових версій моделі 

(RetrainedMLModel). Під час експлуатації всі технічні й обчислювальні параметри переда-

ються у сутність MetricsRecord, що містить телеметричну інформацію про роботу системи. 

Логічні зв’язки між сутностями подано на рис. 2. 
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Рис. 2. Інформаційно-логічна схема технології ML-WAF 

 

2. UML-представлення інформаційної технології ML-WAF 

UML-моделі забезпечують формальне представлення структури, поведінки та взаємодії 

компонентів інформаційної технології ML-WAF. На відміну від концептуальних і структур-

них схем, UML-діаграми подають систему у стандартизованій, незалежній від реалізації 

формі, що дозволяє аналізувати її архітектуру, функціональність і комунікацію між підси-

стемами. 

Для опису технології ML-WAF використано чотири ключові UML-діаграми: Use Case, 

Activity, Class та Sequence, кожна з яких відображає різний аспект системи. Їх текстові форми 

подані на рис. 4–6. 

Use Case-модель (рис. 3) описує взаємодію основних користувачів та зовнішніх акторів 

із системою ML-WAF. Вона визначає, які саме функції надає технологія та які ролі вплива-

ють на процес виявлення атак, управління моделлю та експлуатаційний контроль. 
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Рис. 3. UML Use Case для ML-WAF 

 

 

У технології ML-WAF передбачено три ключові актори: 

1) WebClient, який генерує HTTP-запити й опосередковано взаємодіє з процесом класи-

фікації; 

2) SecurityEngineer, що відповідає за налаштування порогів Tmid та Thigh, аналіз журна-

лів, зміни політик безпеки; а) структурна схема технології 

3) DevOpsEngineer, який контролює MLOps-процеси, розгортання моделей і CI/CD  

конвеєри. 

Кожний актор виконує свій набір функцій, що забезпечує розмежування відповідально-

стей між безпекою та експлуатацією системи. 

Activity-діаграма (рис. 4, а) відображає послідовність дій при обробці HTTP-запиту.  

Вона формалізує логіку виконання операцій у ML-WAF, описуючи динаміку системи з  

моменту надходження запиту до формування рішення та його документування. Ця діаграма 

фіксує логіку переходів між станами під час обробки одного запиту. Вона показує: 

- фундаментальний взаємозв’язок між risk_score та рішенням Policy Engine; 

- роль ML-класифікації як центрального етапу; 

- паралельність процесів логування та моніторингу; 

- три можливі траєкторії виконання (Allow, Sandbox, Block); 

- завершення циклу після документування результату. 

Class-діаграма (рис. 6) описує статичну структуру системи, її програмні сутності та  

атрибути, а також методи та зв’язки між класами. На відміну від інформаційно-логічної мо-

делі, UML Class Diagram подає дані в контексті програмної реалізації. 

Class-модель описує логіку модульності ML-WAF: 

- HttpRequest містить сирі дані, що підлягають обробці; 

- FeatureVector формує структуроване математичне представлення запиту; 

- KnnClassifier реалізує обчислення схожості та визначення risk_score; 

- DecisionEngine відповідає за інтерпретацію результатів ML-класу; 

- Decision є фінальною сутністю, що зберігає деталі рішення. 

У сукупності класи формують ядро програмної логіки ML-WAF (рис. 4, б). 
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а – Activity-діаграма обробки запиту б – Class-діаграма ML-WAF 

Рис. 4. Діаграми компонентів технології ML-WAF 

 

UML Sequence діаграма технології ML-WAF наведена на рис. 5. 
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Рис. 5. UML Class діаграма ML-WAF 

 

Sequence-модель подає часову послідовність викликів між компонентами. На відміну від 

Activity-діаграми, вона демонструє саме взаємодію між об’єктами. 

3. Архітектурна схема інтеграції ML-WAF у середовище Kubernetes 

Розгортання запропонованої ML-моделі виявлення і блокування небезпечних запитів у 

хмарному середовищі вимагає побудови чіткої архітектурної схеми взаємодії компонентів. 

Згідно з підходом Rathore та Park, ефективна інтеграція в Kubernetes має враховувати не  

лише логіку обробки трафіку, а й елементи спостережуваності, масштабування та оновлення 

моделі без зупинки сервісу.  

Архітектура ML-WAF складається з наступних базових компонентів: 

- Ingress Controller – приймає вхідні HTTP(S)-запити та здійснює їх первинну маршрути-

зацію; 

- ML-WAF Service – мікросервіс, що реалізує модель класифікації (KNN+TF/IDF з озна-

ковим збагаченням) та повертає оцінку ризику 𝑟𝑖; 

- Backend Application – прикладна логіка користувача (система SCADA, інформаційний 

портал тощо); 

- Monitor та Logger – модуль моніторингу та журналювання (на базі Prometheus та 

Elasticsearch); 

- ConfigMap та Secrets – сховище конфігурацій порогів 𝜏ℎ, 𝜏𝑚 та API-ключів. 

Потік запитів описується як композиція функцій: 

𝑅𝑟𝑒𝑠𝑝 = 𝐵(𝑀(𝑓𝑖𝑛𝑔(𝑅𝑖𝑛))),       (4) 

де 𝑅𝑖𝑛 – вхідний запит, 𝑓𝑖𝑛𝑔 – Ingress-фільтр (Nginx/Envoy), 𝑀() – виклик ML-WAF модуля, 

𝐵() – бекенд-обробник. 

Якщо 𝑀() повертає 𝑟𝑖 ≥  𝜏ℎ, запит не передається далі. Для масштабування ML-WAF у 

кластері використовується автоматичне збалансування навантаження на основі Horizontal 

Pod Autoscaler (HPA). Формально потужність кластеру визначається як 

𝐶𝑒𝑓𝑓 = ∑
𝑄𝑘

𝐿𝑘

𝑛
𝑘=1 ,         (5) 
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де 𝑄𝑘 – середня кількість оброблених запитів на Pod, а 𝐿𝑘 – атримка (латентність). Згідно з 

дослідженням [11] динамічне масштабування HPA дозволяє підвищити пропускну здатність 

WAF на 35–40 % без збільшення затримки. Архітектурна схема роботи рішення зображена  

на рис. 6. 
 

 

Рис. 6. Логічна архітектура системи машинного веб-фільтра (ML-WAF) 

 

Якщо CPU перевищує порогове значення, HPA створює додаткові Pod, що гарантує 

стійкість до пікових навантажень. Дослідження [12] демонструє, що таке комбінування  

ML-WAF з HPA та Prometheus Exporter забезпечує автоматичну адаптацію системи до змін-

ного трафіку та зменшує частку втрат запитів до 2 %. 

4. Практична оцінка інтегрованої системи ML-WAF 

Для підтвердження ефективності запропонованої архітектури ML-WAF проведено  

експериментальну оцінку роботи системи в умовах, наближених до реального середовища. 

Метою випробувань було визначити точність класифікації запитів, вплив інтеграції  

ML-модуля на продуктивність серверного конвеєра, а також порівняти результати з тра-

диційними WAF-рішеннями. 

Опис експериментального середовища. Випробування виконувалися у контейнеризо-

ваній інфраструктурі Kubernetes з двома вузлами, розгорнутими у Windows WSL2. Конфігу-

рація середовища:  

- Ingress Controller: Nginx 1.25 із Lua API; 

- ML-компонента: KNN+TF/IDF з ознаковим збагаченням, реалізована на Flask 3.0; 

- підсистема моніторингу: Prometheus + Grafana; 

- набір даних: SQLi та XSS-запити з відкритих джерел (OWASP WebGoat, DVWA); 

- сценарій тестування: 30 000 HTTP-запитів, з яких 30 % – шкідливі. 

Тестування проводилося за допомогою утиліти Apache JMeter із 200 паралельними пото-

ками. Замірювалися: середня затримка (ms), пропускна здатність (req/s), точність (precision), 

повнота (recall) та інтегральний показник 𝐹1. 
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Таблиця 2 

Порівняння ефективності ML-WAF з традиційними рішеннями 

Система Precision Recall F₁-score 
Latency 

(мс) 

Пропускна 

здатність (req/s) 

ModSecurity (OWASP CRS) 0.84 0.79 0.81 3.2 720 

Snort + Reverse Proxy 0.88 0.82 0.85 4.1 680 

ML-WAF (запропонована модель) 0.93 0.91 0.92 3.7 705 

ML-WAF (з адаптацією порогів) 0.95 0.93 0.94 3.9 698 

 

Результати свідчать, що інтегрована ML-модель забезпечує на 10–15 % вищу точність 

виявлення порівняно з сигнатурними системами, зберігаючи прийнятну продуктивність. Під 

час тестів із високим навантаженням (до 800 запитів/с) спостерігалося незначне зростання 

затримки, проте середній показник latency не перевищував 4 мс, що є прийнятним для біль-

шості веб-додатків реального часу. У ході додаткових експериментів оцінено кількість хиб-

нопозитивних спрацьовувань – для ML-WAF цей показник склав 2,3 %, тоді як у ModSecurity 

– 6,8 %. 

Як показують дослідження [13], значення FP нижче 3 % вважається відмінним для про-

мислових систем кіберзахисту. Важливим результатом також стало підтвердження масшта-

бованості системи. При збільшенні кількості Pod до шести (через HPA) пропускна здатність 

зросла на 27 %, без зниження точності класифікації. Подібні результати продемонстровані 

[14], які відзначають, що контейнеризація ML-компонентів у WAF підвищує стійкість систе-

ми до DDoS-навантажень і спрощує горизонтальне масштабування. 

Висновки 

Представлено результати комплексного дослідження та розроблення адаптивної інфор-

маційної технології ML-WAF, орієнтованої на класифікацію та блокування ін'єкційних атак у 

контейнеризованому веб-середовищі. Запропонована технологія охоплює всі ключові етапи 

життєвого циклу безпечної обробки HTTP(S)-трафіку – від перехоплення запиту до прийнят-

тя рішення, логування, моніторингу та безперервного оновлення ML-моделі. Побудовано 

концептуальну, структурну, функціональну та інформаційно-логічну моделі ML-WAF,  

а також UML-представлення, що формалізують архітектуру, поведінку та взаємодію компо-

нентів у Kubernetes-орієнтованому середовищі. 

Наукова новизна отриманих результатів полягає в такому. Вперше побудовано інтегро-

вану інформаційну технологію ML-WAF для класифікації та блокування ін'єкційних атак у 

контейнеризованому веб-середовищі, що включає повний конвеєр HTTP(S)-обробки, модуль 

машинного навчання, багаторівневу адаптивну політику реагування, систему журналювання, 

моніторинг телеметрії та MLOps-процеси безперервного перенавчання моделі. Сформовано 

комплексну інформаційно-логічну модель, яка описує взаємозв'язки між сутностями 

HttpRequest, FeatureVector, ClassificationResult, Decision, LogRecord, MetricsRecord, 

TrainingDataset та RetrainedMLModel і відображає повний цикл еволюції моделі в умовах  

контейнеризованої інфраструктури. Запропоновано метод інтеграції ML-компоненти у WAF 

у гібридному режимі реагування (поєднання inline- та out-of-band-підходів), що забезпечує 

одночасно низьку латентність і підвищену стійкість до атак. Розроблено адаптивну модель 

прийняття рішень на основі risk_score з трирівневою реакцією (ALLOW, SANDBOX, 

BLOCK) та можливістю налаштування порогів з урахуванням навантаження і контексту  

трафіку. 

Експериментальна оцінка підтвердила високу ефективність розробленої технології  

ML-WAF. На реалістичному наборі даних було досягнуто такі показники якості: точність 

(Precision) – 0,95, повнота (Recall) – 0,93, інтегральний F₁-score – 0,94. Середня затримка  

обробки одного запиту склала 3,9 мс, а пропускна здатність системи – близько 700 запитів/с. 

Важливим результатом є суттєве зниження частки хибнопозитивних спрацьовувань до 2,3 %, 

що майже утричі менше порівняно з ModSecurity (6,8 %). Після адаптивного перенавчання 
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моделі спостерігалося підвищення стійкості до нових варіантів атак і стабілізація показників 

якості при зростанні навантаження, що підтверджує ефективність запропонованого MLOps-

підходу та масштабованість системи у контейнеризованих середовищах. 

Отримані результати засвідчують, що розроблена інформаційна технологія ML-WAF 

здатна суттєво підвищити рівень захисту веб-систем від ін'єкційних атак, забезпечуючи  

високу точність класифікації запитів, низьку оперативну затримку та здатність до самоадап-

тації в динамічних хмарних інфраструктурах на базі Kubernetes. Це створює основу для  

подальшого розвитку систем проактивної кібербезпеки, зокрема шляхом інтеграції глибин-

них моделей (LSTM, BERT) і побудови повноцінних AI-керованих шлюзів безпеки наступ-

ного покоління. 
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