АНТЕНИ ТА ПРИСТРОЇ МІКРОХВИЛЬОВОЇ ТЕХНІКИ

УДК 662.396.67

DOI:10.30837/rt.2021.2.205.13

В.В. ДОЛЖИКОВ, д-р физ.-мат. наук

ПРОДОЛЬНОЕ РАСПРЕДЕЛЕНИЕ ИНТЕНСИВНОСТИ ПОЛЯ КРУГЛОЙ СФОКУСИРОВАННОЙ АПЕРТУРЫ

Введение

Одной из характерных особенностей современной теории антенн является резко возросший интерес к изучению структуры поля излучения антенн в их зоне Френеля. Это обусловлено несколькими причинами.

Первая из них — это широкое внедрение в практику систем, в основе которых лежит взаимодействие поля излучения антенны с объектом, находящимся в ее зоне Френеля. К числу таковых относятся системы ближней радиосвязи и радиолокации, беспроводной передачи энергии СВЧ-лучом, антенны с синтезированной апертурой, системы медицинской диагностики и гипертермии, использующие сфокусированные антенны для получения высокого пространственного разрешения, системы беспроводной зарядки мобильных устройств, RFID системы и т. д.

Второй причиной повышенного интереса к зоне Френеля является резкое обострение проблемы ЭМС из-за быстрого роста числа радиоэлектронных средств (РЭС), повышения мощности излучения и чувствительности их приемных устройств, существенно возросших требований к обеспечению нормального функционирования близкорасположенных друг к другу РЭС, что характерно, например, для современных морских судов и летательных аппаратов. К проблеме ЭМС примыкает и важнейшая задача защиты биологических объектов от облучения электромагнитным полем, актуальность которой также усилилась в связи с увеличением числа и мощностей излучения РЭС.

U, наконец, третья причина — это рост электрических размеров L/λ современных антенн, в частности из-за интенсивного освоения все более коротких волн, приводящий к удалению границы дальней зоны ($r_{\rm д3} \approx 2L^2/\lambda$), то есть к увеличению протяженности зоны Френеля и, как следствие, к увеличению числа объектов, попадающих в эту зону.

Изучение структуры и особенностей поля излучающих систем (ИС) в зоне Френеля – задача существенно более трудная, чем анализ их поля в дальней зоне. К таким относятся все задачи, связанные с эволюцией характеристик поля в продольном направлении. Зачастую, даже в простейших задачах, получить результат в аналитической форме затруднительно.

В литературе опубликовано уже немало работ, посвященных исследованию особенностей поля антенн в зоне Френеля [1-10]. Однако в большинстве из них приводятся результаты численных расчетов, что не в полной мере удовлетворяет потребности практики.

В работе получены аналитические выражения для основных параметров, характеризующих продольное распределение поля антенны в виде круглой апертуры с равномерным и спадающим возбуждением, сфокусированной как в зону Френеля, так и в дальнюю зону.

Обшие соотношения

Рассмотрим плоскую синфазную круглую апертуру с радиусом, равным R. Поместим начало координат в центр апертуры (рис.1). Предположим, что электрическое поле в апертуре линейно поляризовано в направлении x. Тогда x-я компонента напряженности электрического поля в точке $P(r,\theta,\phi)$ зоны Френеля больших апертур $(2R/\lambda\gg1)$ определяется формулой Френеля-Кирхгофа [11]:

$$E\!\left(r,\theta,\phi\right)\!=\!\frac{ikE_0\left(1\!+\!\cos\theta\right)}{4\pi r}e^{-ikr}\!\int\limits_S\!A\!\left(\rho_1,\phi_1\right)\!e^{i\!\left[k\rho_1\sin\theta\cos\left(\phi\!-\!\phi_1\right)\!-\!\frac{k\rho_1^2}{2r}\!\left(1\!-\!\sin^2\theta\cos^2\left(\phi\!-\!\phi_1\right)\right)\right]}\!\!\rho_1d\rho_1d\phi_1\;,\;\;(1)$$

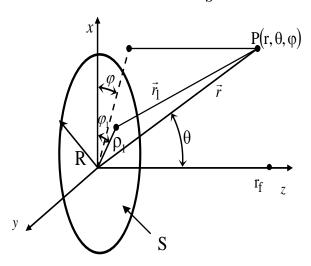


Рис. 1. Геометрия антенны

где E_0 — амплитуда электрического поля на апертуре; $A(\rho,\phi)$ — функция, описывающая амплитудное распределение возбуждающего поля; $k=2\pi/\lambda$ — волновое число; λ — длина волны в свободном пространстве; r,θ,ϕ — сферические координаты точки наблюдения; ρ_1,ϕ_1 — полярные координаты текущей точки на апертуре, S — площадь апертуры.

Если ввести на апертуре дополнительное квадратичное фазовое распределение $k\rho_1^2/2r_f$ (где r_f — фокусное расстояние), то в точке $\theta=0, r=r_f$ оно скомпенсирует фазовую ошибку, обусловленную конечностью расстояния до точки наблюдения (второе слагаемое в по-

казателе экспоненты (1)). Поля всех элементарных источников в этой точке будут складываться в фазе. На некоторой части сферы с радиусом r_f (фокальной сфере) угловое распределение поля будет таким же, как и у синфазной апертуры в дальней зоне.

Угловые границы области компенсации определяются из условия

$$\frac{k\rho_{1}^{2}}{2r_{f}}-\frac{k\rho_{1}^{2}}{2r_{f}}\Big[1-\sin^{2}\theta_{f}^{rp}\cos^{2}\left(\phi-\phi_{1}\right)\Big]=\frac{k\rho_{1}^{2}}{2r_{f}}\sin^{2}\theta_{f}^{rp}\cos^{2}\left(\phi-\phi_{1}\right)\leq\left(kR^{2}\left/2r_{f}\right)\sin^{2}\theta_{f}^{rp}=\pi\left/8\right.$$
 Отсюда

$$\sin\theta_{\rm f}^{\rm rp} = \sqrt{\frac{r_{\rm f}}{8\,{\rm R}^2/\lambda}} = \sqrt{\frac{r_{\rm f}}{r_{_{\rm J}3}}} = \sqrt{\chi_0} \,,$$

где $r_{\rm g,3}=8R^2/\lambda$ — расстояние до границы дальней зоны, $\chi_0=r_{\rm f}/r_{\rm g,3}$ — нормированное значение расстояния фокусировки, которое связано с числом Френеля N соотношением $\chi_0=1/8N$.

Заметим, что для круглой апертуры область компенсации такая же, как и для линейной антенны.

В приближении малых углов можно считать, что $\sin^2\theta\cos^2(\phi-\phi_1)\approx 0$, $(1+\cos\theta)\approx 2$. Введем ряд новых безразмерных переменных: обобщенный угол $\psi=kR\sin\theta$, безразмерную радиальную координату на апертуре $u=\rho_1/R$, нормированную радиальную координату точки наблюдения $\chi=r/r_{д3}$ и обобщенную радиальную координату ζ [7], характеризующую радиальное удаление точки наблюдения от фокальной сферы

$$\zeta = \frac{\pi}{16\chi_0} \left(1 - \frac{\chi_0}{\chi} \right). \tag{2}$$

Согласно [9, 11] расстояние до ближней границы зоны Френеля выбрано равным $r_{\text{бл.}} = R \left(2R / \lambda \right)^{1/3}$, соответственно $\chi_{\text{бл.}} = \frac{\sqrt[3]{2}}{8} \left(\lambda / R \right)^{2/3} = 0.25 \sqrt[3]{\left(\lambda / 2R \right)^2}$. Так, при $R = 1\lambda$

 $\chi_{\rm бл.} \approx 0.157$ и с ростом радиуса апертуры уменьшается, принимая при $R=5\lambda$ значение $\chi_{\rm бл.} \approx 0.054$ и при $R=50\lambda$ значение $\chi_{\rm бл.} \approx 0.012$.

Добавив в показатель экспоненты фокусирующее слагаемое с учетом введенных обозначений, получим из (1) с точностью до множителя $\left(iE_{A}\pi e^{-ikr}/8\right)$ следующее выражение для поля сфокусированной системы:

$$E(\zeta, \psi, \varphi) = \frac{1}{\chi} F(\zeta, \psi, \varphi), \qquad (3)$$

где

$$F(\zeta, \psi, \varphi) = \frac{1}{\pi} \int_{0}^{2\pi} \int_{0}^{1} A(u, \varphi_1) e^{i2\zeta u^2} e^{iu\psi \cos(\varphi - \varphi_1)} u du d\varphi_1$$
 (4)

комплексный множитель круглой апертуры в зоне Френеля. Этот множитель нормирован так, что в фокусе, то есть при $\zeta = 0$ и $\psi = 0$, его значение равно единице.

Продольное распределение интенсивности поля (ПРИ) при равномерном возбуждении

Рассмотрим апертуру с равномерным амплитудным распределением $A(\rho, \phi) = 1$. Для интенсивности поля на фокальной оси $(\psi = 0)$, выполнив интегрирование в (4), получим

$$P(\zeta, \chi_0) = \frac{1}{\chi_0^2} \left[\left(1 - \frac{16\chi_0}{\pi} \zeta \right) \frac{\sin \zeta}{\zeta} \right]^2$$
 (5)

Соотношение (5) описывает распределение интенсивности поля вдоль оси круглой равномерно возбужденной апертуры, сфокусированной в фиксированную точку $\chi_0 = \text{const.}$ Если же зафиксировано положение точки наблюдения, то (5) определяет зависимость интенсивности в точке наблюдения от расстояния фокусировки.

Рассчитанные по (5) кривые нормированного ПРИ для ближней и дальней фокусировок приведены рис. 2 a, δ .

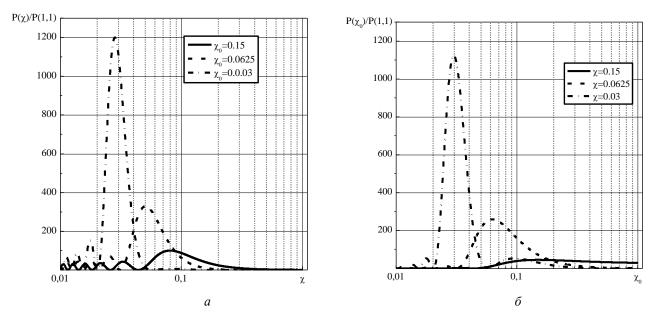


Рис. 2. Зависимость нормированной интенсивности: a – от продольной координаты χ для различных координат точки фокусировки, δ – от координаты точки фокусировки χ_0 для заданных точек на оси

Граница областей ближней и дальней фокусировок условно определена значением $\chi_0 = 0.125$. При таком значении χ расположен последний (дальний от апертуры) максимум продольного распределения интенсивности синфазной апертуры. Критерий $\chi_0 = 0.125$ соответствует числу Френеля N = 1, а условия $\chi_0 \le 0.125$ и $\chi_0 \ge 0.125$ (ближней и дальней фокусировок) соответствуют большим N > 1 и малым N < 1 значениям числа Френеля. Нормировка интенсивности проведена на значение ее на границе дальней зоны синфазной апертуры.

Согласно кривым, приведенным на рис. 2, a, продольное распределение имеет многолепестковый характер и максимальное значение достигается в точке, сдвинутой относительно фокуса в сторону апертуры. При расстояниях фокусировки χ_0 больших, чем 1/16 = 0.0625(N > 2) интенсивность монотонно спадает по мере удаления от точки фокусировки в сторону дальней зоны. Если расстояние фокусировки $\chi_0 < 0.0625$, то в области $\chi > 0.0625$ возникают дополнительные осцилляции интенсивности и появляются дополнительные нули и максимумы, величина которых очень мала.

Координаты дополнительных нулей $\chi_{\rm n}^{(0)}$ определяются выражением

$$\chi_n^{(0)} = \frac{\chi_0}{1 - 16\chi_0 n}, \ n = 1, 2....$$
 (6)

Из (6) следует, что координаты нулей интенсивности и их число зависит от расстояния фокусировки. Так, например (рис. 2, a — штрихпунктирная кривая), для $\chi_0 = 0.03$ первый нуль будет при $\chi_1^{(0)} = 0.058$, а второй при $\chi_2^{(0)} = 0.75$.

Согласно рис. 2, δ максимально возможное значение интенсивности $P_{max}\left(\chi\right)$ в заданной точке на фокальной оси достигается при фокусировке именно в эту точку, то есть при $\chi_{0,max}=\chi$. Величина $P_{max}\left(\chi\right)$ при этом, согласно (5), равна $P_{max}\left(\chi\right)=1/\chi^2$.

Для характеристики свойств ПРИ в зоне Френеля наиболее часто используются следующие параметры [9, 11]: 1) смещение максимума интенсивности поля (МИП) вдоль фокальной оси относительно точки фокусировки $\Delta\chi_{max}$ (Focal Shift – FS); 2) глубина фокусировки D_f (ширина главного лепестка продольного распределения интенсивности на уровне – 3 дБ (Depth of Focus – DoF); 3) усиление фокусировки G_f (Focusing Gain – FG), под которым понимают отношение интенсивности в максимуме к интенсивности на границе дальней зоны синфазной равномерно возбужденной апертуры.

Смещение максимума интенсивности. Координата МИП определяется из условия равенства нулю первой производной от $P(\chi_0,\zeta)$ по ζ

$$\left(1 - \frac{16\chi_0}{\pi}\zeta\right) \left(\frac{\sin\zeta}{\zeta}\right)^2 \left[-\frac{16\chi_0}{\pi} + \left(1 - \frac{16\chi_0}{\pi}\zeta\right) \left(\frac{\cos\zeta}{\sin\zeta} - \frac{1}{\zeta}\right) \right] = 0, \tag{7}$$

Исключив из рассмотрения точки $\zeta = \pm \pi n$, $n = \overline{1,\infty}$, в которых интенсивность обращается в нуль, после ряда преобразований получим уравнение для нахождения координаты максимума

$$\frac{\cos \zeta}{\sin \zeta} = 1 / \left[\zeta \left(1 - \frac{16\chi_0}{\pi} \zeta \right) \right]. \tag{8}$$

Исследование функций, стоящих в правой и левой частях уравнения (8), показывает, что

искомый корень, который обозначим ζ_{max} , лежит в интервале $[-\pi/2, 0]$. Уравнение (8) является трансцендентным и в общем случае допускает только численное решение.

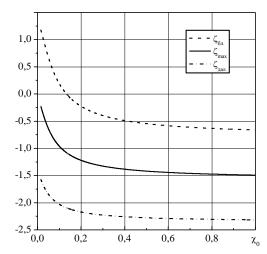


Рис. 3. Зависимость координат максимума, ближней и дальней границ фокальной области от расстояния фокусировки

На рис. 3 представлены зависимости координат максимума ζ_{max} главного лепестка (сплошная кривая) и его границ $\zeta_{\text{бл.}}$ и $\zeta_{\text{дал.}}$ на уровне 0,5 максимума (штриховые кривые), от расстояния фокусировки. На этом и последующих следующих рисунках начальное значение χ_0 взято равным 0.01.

Однако для областей ближней и дальней фокусировок возможно получение приближенного решения в аналитическом виде. Из рис. З видно, что для глубокой и мелкой фокусировок ζ_{max} мало отличается от 0 и $-(\pi/2)$ соответственно. Следовательно, при определении корня уравнения (8) в случаях дальней и ближней фокусировок можно ввести малый параметр, воспользоваться разложением левой и правой частей (8) в ряд по

этому параметру и получить алгебраические уравнения, допускающие аналитическое решение.

Для дальней фокусировки (χ <<1), положив ζ = 0.5 π – x , в качестве такого параметра можно взять x , для ближней – модуль переменной ζ

Опустив промежуточные вычисления, с учетом (2) приведем окончательные выражения для координат главного максимума интенсивности:

$$\chi_{\text{max}} = \frac{2\chi_0}{1 + \sqrt{1 + 12\left(\frac{16\chi_0}{\pi}\right)^2}}, \qquad \chi_0 \le 0.125;$$
 (9a)

$$\chi_{\text{max}} = \frac{1}{8} / \left[1 + \frac{1}{8\chi_0} - \frac{4(1 + 8\chi_0)}{\pi^2 (1 + 8\chi_0)^2 - 4(1 + 16\chi_0)} \right], \quad \chi_0 \ge 0.125.$$
 (96)

Формулы (9а), (9б) имеют погрешность $\leq 2.3\%$ при $\chi_0 \leq 0.125$ и $\chi_0 \geq 0.125$ соответственно. Они позволяют определить положение максимума интенсивности при любых расстояниях фокусировки с приемлемой для практики точностью. Отметим, что для синфазной апертуры ($\chi_0 = \infty$) координата максимума $\chi_{max} = 1/8$.

Сдвиг точки максимума $\Delta \chi_{max} = \chi_0 - \chi_{max}$ относительно точки фокусировки определится следующими выражениями:

$$\Delta \chi_{\text{max}} = 3 \left(\frac{16}{\pi} \right)^2 \chi_0^3 \left[1 - 6 \left(\frac{16}{\pi} \right)^2 \chi_0^2 + 45 \left(\frac{16}{\pi} \right)^4 \chi_0^4 \right], \qquad \chi_0 \le 0.125,$$
 (10a)

$$\Delta \chi_{\text{max}} = \chi_0 \left[\sqrt{1 + 12 \left(\frac{16\chi_0}{\pi} \right)^2} - 1 \right] / \left[\sqrt{1 + 12 \left(\frac{16\chi_0}{\pi} \right)^2} + 1 \right], \quad \chi_0 \ge 0.125.$$
 (106)

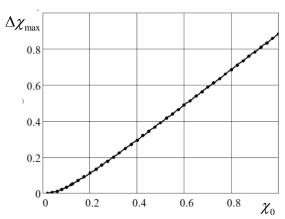


Рис. 4. Зависимость смещения точки максимума от расстояния фокусировки

Погрешность результатов, рассчитанных по формулам (10a), (10б) \leq 3.5% (рис. 4). Максимальная погрешность при $\chi_0 \approx 0.125$. На рис. 4 и далее сплошные или штриховые кривые взяты из работы [10], а точками обозначены результаты расчетов по соотношениям, полученным в данной работе.

Согласно (10a) при приближении точки фокусировки к апертуре смещение точки максимума относительно фокуса убывает пропорционально χ_0^3 . Так, при $\chi_0 \to 0$ величина смещения макси-

мума
$$\Delta \chi_{\text{max}} \to 3(16/\pi)^2 \chi_0^3$$
.

Для $\chi_0 \le 1/96$, близкое к (10a) выражение получено в [12]:

$$\Delta \chi_{max} \approx \frac{\chi_0}{1 + \frac{1}{3} \left(\frac{\pi}{16}\right)^2 \chi_0^2}.$$

Усиление фокусировки. Усиление фокусировки $G_f\left(\chi_0\right)$ определяется как отношение интенсивности в максимуме к интенсивности на границе дальней зоны при синфазном и равномерном возбуждении:

$$G_{f}(\chi_{0}) = P_{\text{max}}(\chi_{0})/P(\chi = 1, \chi_{0} = \infty). \tag{11}$$

На основании (2), (5) и (9) получим:

$$G_f(\chi_0) = \frac{1}{\gamma_0^2} (1 + 77.815\chi_0^2 - 1346\chi_0^4), \qquad \chi_0 \le 0.125,$$
 (12a)

$$G_{f}(\chi_{0}) = \left(\frac{16}{\pi}\right)^{2} \left(1 + 0.245 \frac{1}{\chi_{0}} + 0.028 \frac{1}{\chi_{0}^{2}}\right), \quad \chi_{0} \ge 0.125.$$
 (126)

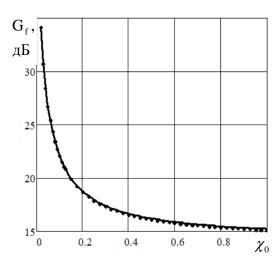


Рис. 5. Зависимость усиления фокусировки от расстояния фокусировки

Погрешность величины $G_f(\chi_0)$, определяемой по (12) не превышает 2% для всей области значений χ_0 (рис.5). При приближении точки фокусировки в пределах зоны Френеля к апертуре усиление фокусировки монотонно растет пропорционально χ_0^{-2} , а при увеличении расстояния фокусировки до бесконечности $G_f(\chi_0 \to \infty) \to (16/\pi)^2$.

 Γ лубина фокусировки. Глубину фокусировки D_χ (продольный размер главного лепестка) принято оценивать шириной главного лепестка продольного распределения интенсивности на уровне 0,5 максимального значения. Точные значения координат ближней и дальней границ на уровне

0,5 находятся численным решением уравнения

$$P(\zeta) = 0.5 P_{\text{max}}. \tag{13}$$

Для получения приближенных формул, справедливых отдельно для мелкой и ближней фокусировок воспользуемся тем, что координаты ближней и дальней границ, выраженные в единицах ζ , незначительно отличаются от величин $\zeta^{(1,2)} = \zeta_m \pm 1$, приведенных на рис. 3. Для значения интенсивности на уровне 0,5 с точностью до членов первого порядка малости имеем

$$P(\zeta_{1,2}) = P(\zeta^{(1,2)}) + \Delta \zeta_{1,2} \frac{d}{d\zeta} P(\zeta)_{\zeta^{(1,2)}} = 0.5 P_m,$$

тогда $\Delta\zeta_{1,2} = \left\lceil 0.5\,P_m - P\!\left(\zeta^{\left(1,2\right)}\right)\right\rceil\!\left/\!P\!\left(\zeta\right)\!\right|_{\zeta}$ и соответствующие координаты границ лепестка

$$\zeta_{1,2} = \zeta^{(1,2)} + \Delta \zeta_{1,2}$$
.

Опустив промежуточные вычисления, приведем окончательные выражения для глубины фокусировки

$$D_{f}(\chi_{0}) = \chi_{0}^{2} \left(\frac{16}{\pi}\right)^{2} \left(0.594 - 4.253\chi_{0} + 7.574\chi_{0}^{2}\right), \qquad \chi_{0} \le 0.125, \tag{14a}$$

$$D_{f}\left(\chi_{0}\right) = \frac{1}{6} - 0.017 \frac{1}{\chi_{0}} + 0.00068 \frac{1}{\chi_{0}^{2}}. \quad \chi_{0} \ge 0.125.$$
 (146)

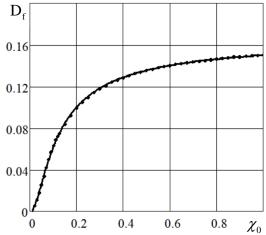


Рис. 6. Зависимость глубины фокусировки от расстояния фокусировки

Рассчитанные по (14a) значения глубины фокусировки отличаются от точных не более, чем на 3,2 %, а по (14б) не более чем на 1,5 % (рис. 6).

Из (14) следует, что глубина фокусировки уменьшается с уменьшением χ_0 . Наиболее быстро уменьшение происходит в области глубокой фокусировки — пропорционально χ_0^2 . При расстоянии фокусировки, равном расстоянию до границы дальней зоны $(\chi_0=1)$ $D_f=0.15$, а при $\chi_0\to\infty$ глубина фокусировки, выраженная в единицах расстояния до границы дальней зоны, стремится к значению, равному $1/6\approx0.17$.

Продольное распределение интенсивности поля при спадающем к краям возбуждении

Рассмотрим апертуру со спадающим амплитудным распределением типа «парабола на пьедестале» $A(u)=1-(1-\Delta)u^2$, где Δ – высота пьедестала, которое во многих случаях хорошо аппроксимирует реальное распределение амплитуды [13, 14].

Полагая в (4) $\psi = 0$, для продольного распределения интенсивности поля будем иметь

$$P(\zeta) = \frac{1}{\chi_0^2} \left(1 - \frac{16\chi_0}{\pi} \zeta \right)^2 \frac{\sin^2 \zeta}{\zeta^2} \left\{ \Delta + \frac{\left(1 - \Delta \right)^2}{4} \left[1 + \left(\frac{1}{\zeta} - \frac{\cos \zeta}{\sin \zeta} \right)^2 \right] \right\}. \tag{15}$$

На рис. 7 показано продольное распределение нормированной интенсивности при ближней ($\chi_0 \le 0.125$) и дальней ($\chi_0 > 0.125$) фокусировках соответственно.

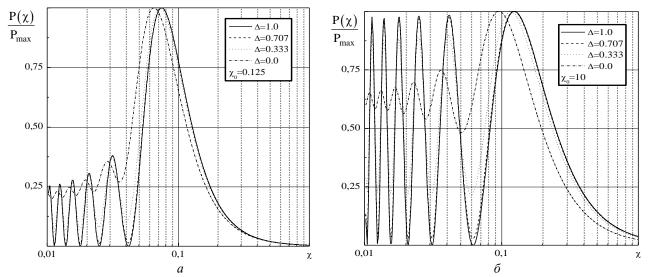


Рис. 7. Продольное распределение интенсивности при неравномерном возбуждении

Видно, что с уменьшением величины пьедестала происходит сглаживание осциллирующего характера продольного распределения: увеличивается средний уровень интенсивности, относительно которого осциллирует ее величина и уменьшаются амплитуды этих осцилляций. При этом имеют место смещение точки максимума интенсивности поля к апертуре по сравнению с случаем равномерного возбуждения, уменьшение величины интенсивности в максимуме, изменение глубины фокусировки, заполнение нулей.

Смещение максимума интенсивности. Координата точки МИП определяется из условия равенства нулю первой производной от $P(\zeta)$ по ζ , которое приводит к следующему уравнению:

$$\Delta \left[\left(1 - \frac{16\chi_0}{\pi} \zeta \right) \frac{\cos \zeta}{\sin \zeta} - \frac{1}{\zeta} \right] - \frac{\left(1 - \Delta \right)^2}{4} \left[\frac{16\chi_0}{\pi} + 2 \left(1 - \frac{8\chi_0}{\pi} \zeta \right) \left(\frac{1}{\zeta} - \frac{\cos \zeta}{\sin \zeta} \right)^2 \frac{1}{\zeta} \right] = 0$$
 (16)

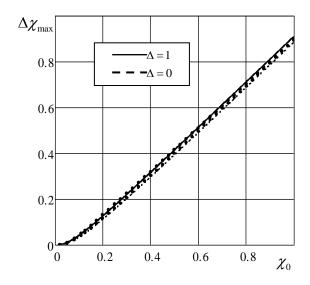
Так как аналитическое решение (16) в общем случае невозможно, то аналогично тому, как это было сделано в случае равномерного возбуждения, получено следующее приближенное выражение

$$\Delta \chi_{\text{max}} \left(\chi_0, \Delta \right) = \frac{\chi_0 \sqrt{1 + 12 \left(\frac{16 \chi_0}{\pi} \right)^2 \left[1 - 1.24 \left[\frac{\left(1 - \Delta \right)^2}{12 \Delta + 2 \left(1 - \Delta \right)^2} \right]^2 \right]} - 1}{\sqrt{1 + 12 \left(\frac{16 \chi_0}{\pi} \right)^2 \left[1 - \left[\frac{\left(1 - \Delta \right)^2}{12 \Delta + 2 \left(1 - \Delta \right)^2} \right]^2 \right]} + \frac{6 \Delta}{6 \Delta + \left(1 - \Delta \right)^2}}$$
(17)

Погрешность расчетов по (17) не более 7 % (рис.8). Максимальная погрешность при $\chi_0 \approx 0.1$ и нулевом пьедестале.

Из зависимостей смещения максимума при спадающем амплитудном возбуждении, нормированного на смещение при равномерном возбуждении, от высоты пьедестала при различных расстояниях фокусировки, показанных на рис. 9, и соотношения (17) видно, что при любых значениях расстояния фокусировки уменьшение пьедестала ведет к увеличению

смещения максимума. Эффект влияния изменения Δ на величину смещения точки МИП значительно усиливается по мере уменьшения высоты пьедестала. Наиболее сильно он проявляется при $\Delta < 0.25$. Следует также отметить, что если при ближней фокусировке величина смещения точки МИП за счет высоты пьедестала заметно зависит от значения расстояния фокусировки, то при мелкой фокусировке влияние Δ практически одинаково для всех χ_0 . Особенно это характерно для $\chi_0 \geq 0.5$ (шрих-пунктирная кривая на рис. 9).



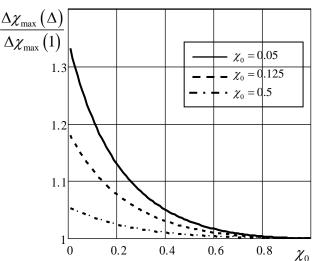


Рис. 8. Зависимость смещения максимума от расстояния фокусировки

Рис. 9. Зависимость нормированного смещения максимума от расстояния фокусировки

Усиление фокусировки. Величина усиления фокусировки определяется по (11), (15). Соответствующие выражения имеют следующий вид:

ближняя фокусировка ($\chi_0 \le 0.125$)

$$G_{f} = \frac{1}{\chi_{0}^{2}} \begin{bmatrix} (1+77.815\chi_{0}^{2}-1346\chi_{0}^{4}) + (1+90.784\chi_{0}^{2}-1547\chi_{0}^{4})(1-\Delta) + \\ + (0.25+38.907\chi_{0}^{2}-504.598\chi_{0}^{4})(1-\Delta)^{2} \end{bmatrix}$$
(18a)

дальняя фокусировка ($\chi_0 \ge 0.125$)

$$G_{f} = \left(\frac{16}{\pi}\right)^{2} \begin{bmatrix} \left(1+0.245\frac{1}{\chi_{0}}+0.028\frac{1}{\chi_{0}^{2}}\right) - \left(1+0.246\frac{1}{\chi_{0}}+0.027\frac{1}{\chi_{0}^{2}}\right)(1-\Delta) + \\ + \left(0.378+0.092\frac{1}{\chi_{0}}+0.00469\frac{1}{\chi_{0}^{2}}\right)(1-\Delta)^{2} \end{bmatrix}.$$
 (186)

Результаты расчетов по (18a) имеют погрешность не более 4,5%, а по (186) – не более чем 3% (рис. 10,11).

Согласно (18) с уменьшением пьедестала усиление фокусировки уменьшается как при ближней, так и при мелкой фокусировках.

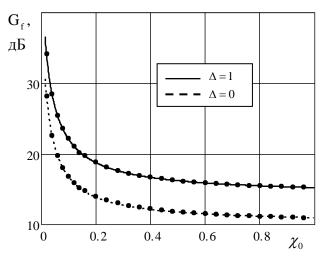


Рис. 10. Зависимость усиления фокусировки от расстояния фокусировки для различных высот пьедестала

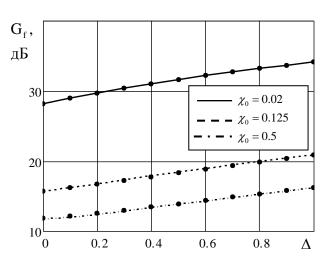


Рис. 11. Зависимость усиления фокусировки от высоты пьедестала для различных значений расстояния фокусировки

Глубина фокусировки. Для определения глубины фокусировки необходимо предварительно определить положение ближней и дальней точек на оси, в которых значение интенсивности равно $0.5P_{\rm max}$. Координаты этих границ удовлетворяют уравнению (13). Они находятся в предположении, что значения их незначительно отличаются от значений при равномерном распределении. Опустив несложные, но громоздкие вычисления, приведем окончательные выражения для глубины фокусировки:

ближняя фокусировка ($\chi_0 \le 0.125$)

$$D_{f} = \chi_{0}^{2} \left(\frac{16}{\pi}\right)^{2} \left[\left(0.59 - 4.227\chi_{0} + 7.66\chi_{0}^{2}\right) + \left(0.145 - 2.444\chi_{0} + 10.343\chi_{0}^{2}\right) \left(1 - \Delta\right)^{2} \right]$$
(19a)

дальняя фокусировка (χ_0 ≥ 0.125)

$$D_{f} = \left(0.1667 - 0.018 \frac{1}{\chi_{0}} + 0.00068 \frac{1}{\chi_{0}^{2}}\right) - \left(0.021 - 0.00314 \frac{1}{\chi_{0}} - 0.00009 \frac{1}{\chi_{0}^{2}}\right) (1 - \Delta)^{2}. \quad (196)$$

Результаты расчетов по (19a) имеют погрешность не более 4 % и по (19б) не более 3 % (рис. 12, 13).

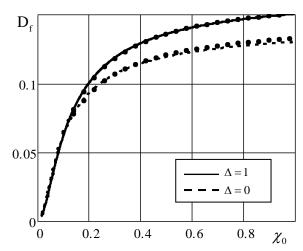


Рис. 12. Зависимость глубины фокусировки от расстояния фокусировки для различных высот пьедестала

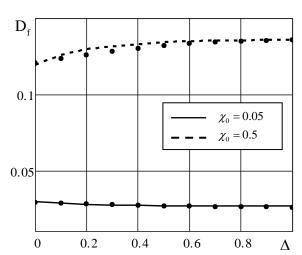


Рис. 13. Зависимость глубины фокусировки от высоты пьедестала для различных расстояний фокусировки

Из (19) следует, что при ближней фокусировке с уменьшением пьедестала продольный размер главного лепестка увеличивается, а при мелкой уменьшается. Так, расширение главного лепестка при нулевом пьедестале для $\chi_0 = 0.02$ составляет 22 %, а его сужение для $\chi_0 = 1.0$ (синфазной апертуры) примерно равно 13 %.

Выводы

Получены аналитические выражения для расчета основных параметров, характеризующих продольное распределение интенсивности поля круглой сфокусированной апертуры: смещения максимума интенсивности относительно точки фокусировки, усиления фокусировки, глубины фокусировки. Рассмотрены случаи равномерного и спадающего амплитудных распределений поля возбуждения. Сравнение с результатами численных расчетов показало, что полученные приближенные соотношения позволяют определить значения упомянутых параметров для любых значений расстояния фокусировки, лежащих как в зоне Френеля, так и в дальней зоне с погрешностью, не превышающей 7 %. Результаты работы будут полезны при расчете поля апертурных антенн в виде круглой сфокусированной апертуры, а также сфокусированных антенных решеток, работающих в зоне Френеля.

Список литературы:

- 1. Bickmore R. W. and Hansen R. C. Antenna Power Densities in the Fresnel region // Proceedings IRE, 47, December 1959, pp. 2119-2120.
- 2. Hu M. K. Fresnel region fields of circular aperture antennas // J. Res.Nat. Bureau Standards, vol. 65D, no. 2, pp. 137–149, Mar.Apr. 1961.
- 3. Sherman J. W. Properties of Focused Apertures in the Fresnel Region // IRE Transactions on Antennas and Propagation, **10**, 4, July 1962, pp. 399-408.
 - 4. Hansen R. C. Microwave Scanning Antennas. Vol. 1: Apertures, New York, Academic Press, 1964.
- 5. Hansen R. C. Focal Region Characteristics of Focused Array Antennas // IEEE Transactions on Antennas and Propagation, AP-33, 12, December 1985, pp1328-1337.
- 6. Kay A. Near-field gain of aperture antennas // IEEE Trans. Antennas Propag., vol. 8, no. 6, 1960, pp. 586–593.
- 7. Graham W. J. Analysis and Synthesis of Axial Field Pattern of Focused Apertures // IEEE Trans. Antennas Propag., vol. 31, no 4, July 1983, pp. 665-668.
- 8. Nepa P. Near-Field Focused Antennas for Wireless Communications and Power Transfer // International Spring School on Electromagnetics and emerging technologies for pervasive applications: Internet of Things, Health and Safety. 18th–20th April, 2016, Bologna, Italy.
- 9. Selvan K.T., Janasvamy R. Fraunhofer and Fresnel Distances // IEEE Antennas and Propagation Magazine. Augest. 2017. P 2-5.
- 10. Wang W., Gao H., Wu Y., Liu Y. Impact on Focal Parameters for Near field focused Aperture Antennas // J Numer Model. 2018; e2510, P 1-13. https://doi.org/10.1002/jnm.2510.
 - 11. Silver S. Microwave Antenna Theory and Design. McGraw-Yill, New York, 1949. 312 p.
- 12. Yujun Li, Wolf E. Focal Shift in Diffracted Converging Sphericfl Wave // Opotics Communications. 39, N4. 1981, pp.211-215.
 - 13. Ямпольский В.Г., Фролов О.П. Антенны и ЭМС. Москва: Радио и связь, 1983. 272 с.
 - 14. Balanis, Constantine A. Antenna Theory Analysis and Design, 4-th ed. John Wiley&Sons, Inc., 2016. 1072p.

Поступила в редколлегию 07.03.2021

Сведения об авторе:

Должиков Владимир Васильевич — д-р физ.-мат. наук, профессор, Харьковский национальный университет радиоэлектроники, профессор кафедры компьютерной радиоинженерии и систем технической защиты информации, факультет информационных радиотехнологий и технической защиты информации; Украина, e-mail: vladimir.dolzhikov@nure.ua, ORCID: https://orcid.org/0000-0001-5777-8014