РАСПРОСТРАНЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН ВДОЛЬ ПЛОСКОЙ МЕТАЛЛИЧЕСКОЙ РЕШЕТКИ С ЭКРАНОМ И ДИЭЛЕКТРИКОМ

В. Н. Злуницына

Харьков

Вопрос о распространении электромагнитных волн вдоль лент металлической решетки с экраном вызывает интерес, поскольку данная структура может применяться как многопроводная передающая линия и как излучающая система [1—5]. Применение в данной работе метода, изложенного в статье [6], позволило получить дисперсионные уравнения для любых типов волн, способных распространяться в рассматриваемой структуре, с учетом всего спектра пространяться в рассматриваемой структуре, с учетом всего спектра пространственных гармоник при любом соотношении между параметрами структуры и длиной волны. Рассмотрены резонансы на различных пространственных гармониках и вычислены амплитуды пространственных гармоник по отношению к амплитуде той гармоники, на которой происходит резонанс. Существенно также то, что в настоящей работе исследовано влияние диэлектрической среды на распространение различных типов волн.

Рассмотрим бесконечную периодическую структуру, состоящую из решетки, образованной бесконечно тонкими, идеально проводящими металлическими лентами, расположенными на расстоянии d друг от друга (период решетки l), и идеально проводящего экрана, находящегося на расстоянии a от решетки. Вся система находится в безграничном диэлектрике с диэлектрической проницаемостью $\varepsilon = \varepsilon' + i\varepsilon''$.

Однородность системы вдоль направления распространения позволяет рассматривать отдельно два независимых типа воли: поперечно-магнитные волны (ТМ-волны) и поперечно-электрические волны (ТЕ-волны).

Дисперсионные уравнения для ТМ-и ТЕ-волн представляют собой бесконечные определители. Элементы этих определителей содержат множитель g_n , который при $n \to \infty$ стремится к нулю, как $\frac{1}{n^2}$. Это дает возможность ограничить определитель и пользоваться в расчетах конечным числом членов, которое зависит от требуемой точности.

Для ТМ-волн дисперсионное уравнение имеет следующий вид:

$iv_0 W_0^0 + (1 - e^{i4\pi})$	$\frac{u}{l}$) $g_1 W_{u}^1$	W_{0}^{-1}	•		$g_N [W_0^N + W_0^{-N}]$	
No W1	$g_1 W_1$	$W_{1}^{-1} - 1$	•••	÷	$g_N[W_1^N + W_1^{-N}]$	0
woW2	$g_1[W]$	₩ ⁷ ,1]	• •	*	$g_N[W_2^N + W_2^{-N}]$	= 0,
	• • • • • • • •		• •	•	· ·	
'aW N	$g_1 [W]_N$	W_N^{-1}	• •		$g_N[W_N^A, W_N^{-N}] = 1$	
						(1)

а для ТЕ-волн

$$\begin{vmatrix} iv_{0}W_{0}^{0}\left(1-e^{i4\pi\frac{a}{t}}v_{\bullet}\right)+1 & g_{1}[W_{0}^{1}+W_{0}^{-1}] & \cdots & g_{N}[W_{0}^{N}+W_{0}^{-N}] \\ iv_{0}W_{1}^{0}\left(1-e^{i4\pi\frac{a}{t}}v_{\bullet}\right) & g_{1}[W_{1}^{1}+W_{1}^{-1}]-1 & \cdots & g_{N}[W_{1}^{N}+W_{1}^{-N}] \\ iv_{0}W_{2}^{0}\left(1-e^{i4\pi\frac{a}{t}}v_{\bullet}\right) & g_{1}[W_{2}^{1}-W_{2}^{-1}] & \cdots & g_{N}[W_{2}^{N}+W_{2}^{-N}] \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ iv_{0}W_{N}^{0}\left(1-e^{i4\pi\frac{a}{t}}v_{\bullet}\right) & g_{1}[W_{N}^{1}+W_{N}^{-1}] & \cdots & g_{N}[W_{N}^{N}+W_{N}^{-N}]-1 \end{vmatrix} = 0, (2)$$

 $W_0^n = V_{12l}^n - V_0^n 2R_{12l}; W_m^n = V_m^n - V_0^n P_m v_n = \frac{l}{2\pi} \beta_n; \beta_n = \sqrt{k^2 z - \gamma^2 - \left(\frac{2\pi n}{l}\right)^2};$ $k = \frac{\omega}{c} (\beta_n$ -постоянная распространения *n*-той пространственной гармоники в направлении перпендикулярном к решетке (ось *ox*); γ -постоянная

$$g_{n} = \begin{vmatrix} 1 + i \frac{\nu_{n}}{n} \cdot \frac{1}{1 - e^{i4\pi \frac{a}{l}\nu_{n}}} & (TM-волны) \\ 1 - e^{i4\pi \frac{a}{l}\nu_{n}} \\ 1 + i \frac{\nu_{n}}{n} \cdot \left(1 - e^{i4\pi \frac{a}{l}\nu_{n}}\right) & (TE-волны) \end{vmatrix}$$

распространения в направлении распространения);

 $(V_{[a]}^n; R_{[b]}; V_m^n -$ определяются через полиномы Лежандра аргумента $u = \cos \frac{\pi d}{l}$ для ТМ-волн н аргумента $u = -\cos \frac{\pi d}{l}$ для ТЕ-волн).

При рассмотрении распространения различных типов волн в данной структуре представляет интерес исследование следующих характеристик: а) затухания волны по мере распространения

$$\eta'' = \frac{l}{2\pi} \gamma'';$$

б) излучения волны в направлении, перпендикулярном решетке,

$$\nu_n'' = \frac{l}{2\pi} \beta_n''$$

 в) величины отношения фазовой скорости волны в исследуемой структуре к скорости света в свободном пространстве

$$\frac{V_{\phi}}{c} = \frac{\pi}{\eta} \left(\mathbf{x} = \frac{kl}{2\pi} \right);$$

r) добротности колебаний

$$Q=\frac{1}{2}\frac{\eta'}{\eta''};$$

д) волновых сопротивлений

$$Z_{\rm TM}=\frac{\eta}{\varkappa\epsilon}; \quad Z_{\rm TE}=\frac{\varkappa}{\eta};$$

е) уменьшения амплитуды волны при прохождении волной расстояния, равного периоду структуры

$$\frac{A_{z+l}}{A_z} = e^{-2\pi\eta^z},$$

и расстояния, равного длине волны в системе $\frac{A_{z+\lambda_g}}{A_z} = e^{-\frac{2\pi\eta^2}{\chi^2}}$

ж) отношения средних значений потоков энергии через поперечные сечения $-a < x < 0; -\frac{l}{2} < y < \frac{l}{2}$, расположенные на расстоянии l друг от друга

$$\frac{\Pi_{z+l}}{\Pi_z} = e^{-4\pi\eta}$$

и на расстоянии длины волны в системе $\frac{\Pi_{z+\lambda_g}}{\Pi_z} = e^{-\frac{4\pi\eta^2}{\gamma'}}$.

Помимо этого важно установить закон сохранения энергии для ТМи ТЕ-волн. Для ТМ-волн закон сохранения энергии при з = 1 записывается в виде

$$2\eta'\eta''|v_0|^2 \left[\frac{1}{2v_0''} \cdot \left(1 - e^{-\frac{8\pi a}{l}v_0''}\right) + \frac{1}{v_0'} \cdot e^{-\frac{4\pi a}{l}v_0''} \sin\frac{4\pi a}{l}v_0'\right] + + \operatorname{Re} v_0^* \cdot v_0^2 \left[1 - 2ie^{-\frac{4\pi a}{l}v_0''} \sin\frac{4\pi a}{l}v_0' - e^{-\frac{8\pi a}{l}v_0''}\right] + + 2\sum_{n=1}^{\infty} \frac{|b_n|^2}{|b_0|^2} \left\{2\eta'_l \eta'' \left[\frac{1}{2v_n''} \left(1 - e^{-\frac{8\pi a}{l}v_n''}\right) (|v_n|^2 + n^2) + \right. \\ \left. \frac{1}{v_n'} e^{-\frac{4\pi a}{l}v_n''} \cdot \sin\frac{4\pi a}{l}v_n' (|v_n|^2 - n^2) \right] + \operatorname{Re} v_n^* v_0^2 \left[\left(1 - e^{-\frac{8\pi a}{l}v_n''}\right) - \\ \left. - 2ie^{-\frac{4\pi a}{l}v_n''} \sin\frac{4\pi a}{l} \cdot v_n'\right] \right\} = 0,$$

а для ТЕ-волн

+

$$2\eta' \eta'' |v_0|^2 \left[\frac{1}{2v_0''} \left(1 - e^{-\frac{8\pi a}{l} v_0''} \right) + \frac{1}{v_0'} \cdot e^{-\frac{4\pi a}{l} v_0''} \sin \frac{4\pi a}{l} v_0' \right] + + \operatorname{Re} \left(v_0^2 \right)^* \cdot v_0 \cdot \left[1 - 2ie^{-\frac{4\pi a}{l} v_0''} \sin \frac{4\pi a}{l} v_0' - e^{-\frac{8\pi a}{l} v_0''} \right] + + 2 \sum_{n=1}^{\infty} \frac{|b_n|^2}{|b_0|^2} \cdot \left\{ 2\eta' \eta'' \left[\frac{1}{2v_n''} \left(1 - e^{-\frac{8\pi a}{l} v_n''} \right) (|v_n|^2 + n_2) + \right. \\ \left. + \frac{1}{v_n'} \cdot e^{-\frac{4\pi a}{l} v_n''} \sin \frac{4\pi a}{l} v_n' (|v_n|^2 - n^2) \right] + + \operatorname{Re} \left(v_0^2 \right)^* \cdot v_n \left[\left(1 - e^{-\frac{8\pi a}{l} v_n''} \right) - 2ie^{-\frac{4\pi a}{l} v_n''} \cdot \sin \frac{4\pi a}{l} v_n' \right] \right\} = 0.$$

Как видно из выражений (1) и (2), дисперсионные уравнения для ТМ- и ТЕ-волн имеют вид трансцендентных уравнений с комлексными коэффициентами, что соответствует тому, что в данной структуре может существовать бесчисленное множество типов ТМ- и ТЕ-волн. Корни данных дисперсионных уравнений определяют критические частоты для каждого из этих типов волн. Выбор порядка определителя позволяет учесть любое число пространственных гармоник. Дисперсионные уравнения исследовались численно на ЭВМ «Урал-2». Для нахождения корней применялся метод последовательных приближений Ньютона. Начальными приближениями для системы с малыми щелями служили корни дисперсионных уравнений для плоско-параллельного волновода $v_{max} = \frac{ml}{2a}$, где $m = 0, 1, 2, 3 \dots$ для ТМ-волн н $m = 1, 2, 3 \dots$ для ТЕ-воли. При этом значение $v_{max} = \frac{ml}{2a}$ может быть начальным приближе-

Рис. 1. Зависимость затухания ТЕМ-волны от частоты при различных значениях диэлектрической проницаемости среды.

нием как для 0-ой, так и для любой n = p-той гармоники. т. е. в общем случае $v_{p \text{ нач}} = \frac{ml}{2a}$, $v_{0\text{нач}} = \sqrt{\left(\frac{ml}{2a}\right)^2 + p^2}$. Физически задание начального приближения для *p*-той гармоники соответствует исследованию резонанса на данной гармонике.

Таким образом, в рассматриваемой системе может существовать бесчисленное множество типов поперечно-магнитных $TM_m^n(E_m^2)$ и поперечноэлектрических $TE_m^p(H_m^p)$ -волн, где индекс *m* указывает на тип волны, а *p* — на какой пространственной гармонике происходит резонанс. Каждому из этих типов волн соответствует бесчисленное множество пространственных гармоник, причем все пространственные гармоники, соответствующие данному типу волны и данному резонансу, распространяются вдоль оси *ог* с одной и той же фазовой скоростью и одним и тем же затуханием.

ТЕМ-волна является частным случаем ТМ^{*p*}_{*m*}-волн (*m* = 0). Рассматривался резонанс на 0-ой гармонике ($\nu_{0Hav} = 0$) при следующих параметрах структуры: $\frac{l}{a} = 0,5; 1; 5; 10; 50; |u| < 0,999$. Исследования показали.

что решетка не влияет на распространение ТЕМ-волны. ТЕМ-волна при любых параметрах структуры и любой частоте распространяется вдоль оси ог без излучения с фазовой скоростью, равной скорости света в свободном пространстве. Отношение амплитуд пространственных гармоник ТЕМ-волны к амплитуде 0-ой гармоники при любых параметрах структуры по модулю меньше, чем 10⁻⁷, т. е. ими можно пренебречь. Из выражений для поля можно найти, что ТЕМ-волна является чи-

Из выражений для поля можно найти, что ТЕМ-волна является чисто поперечной волной и энергия этой волны полностью сосредотачивается в пространстве между решеткой **ж** экраном.

Рис. 2. Энергетические характеристики ТЕМ-волны в зависимости от частоты при различных значениях диэлектрической проницаемости среды.

Исследовалось влияние диэлектрика на распространение ТЕМ-волн в широком диапазоне частот 0,2 < x < 20. На рис. 1 показано, что затухание ТЕМ-волны в системе тем больше, чем больше частота и чем больше потери в диэлектрике. Из рис. 2 видно, что для диэлектриков с малыми потерями типа фторопласт (ε_1) и полистирол (ε_2) уменьшение амплитуды ТЕМ-волны и потока энергии через поперечное сечение системы при прохождении волной расстояния равного периоду системы незначительное даже при больших х. С ростом потерь в диэлектрике (например. при $\varepsilon = 4 + 0,4i$) уже при x = 4 при прохождении волной расстояния равного периоду структуры, поток энергии через поперечное сечение системы незначительный, т. е. волна почти полностью затухает.

В табл. 1 приведены значения волнового сопротивления и добротности системы для различных диэлектрических заполнений среды, а также показано, как уменьшается амплитуда ТЕМ-волны и величина потока энергии через поперечнос сечение системы при прохождении волной расстояния, равного длине волны в структуре.

Для ТМ["]_m и ТЕ^p_m волн в общем случае $v_{0nay} = V \left(\frac{ml}{2a}\right)^2 + p^2$. Исследования показали, что ТМ^p_m- и ТЕ^p_m-волны могут распространяться в дан-

Таблица І

$\varepsilon = \varepsilon' + i\varepsilon''$	Q	Z' _{TEM} , 0 m	$\frac{A_{z+\lambda_g}}{A_z}$	$\frac{\Pi_{z+\lambda_g}}{\Pi_z}$
2+0,004	4965,1295	256	0,99937	0,99873
2,55+0,00084 2+0,02	3035,485	236 267	0,96907	0,939103

ной системе только в том случае, если рабочая частота превышает критическую частоту для данного типа волн при определенных параметрах

Рис. 3. Зависимость критических частот TM_{1}° и TE_{1}° волн от ширины щелей при $\frac{l}{a} = 1$. 1 — TE_{1}° — волна; 2 — TM_{1}° — волна.

структуры. При данном $\frac{l}{a}$ критическая частота тем больше, чем больше *m* и *p*; при фиксированном *m* — чем больше *p*. При $\star^2 \varepsilon' < 1$ при любом $\frac{l}{a}$ может возникнуть резонанс только на 0-ой гармонике, причем, чем меньше $\frac{l}{a}$ (*l* фиксировано), тем больше типов TM_m^p -волн может распространяться в исследуемой структуре при данном \star . Далее, установлено, что при наличии даже очень узких щелей уничтожается вырождение для TE_m -и TM_m -волн, наблюдаемое в плоско-параллельном волноводе. При фиксированном a и l с ростом ширины щели критическая частота для TE_m^p -волн растет, а для TM_m^p -волн уменьшается. На рис. З показана зависимость критической частоты TM_1^0 -и TE_1^p -волны от ширины щели при $\frac{l}{a} = 1$, т. е. при фиксированных параметрах структуры наименьшую критическую частоту имеет TM_1^0 -волна, затем TE_1^p -волна.

Исследования показали, что диапазон частот, в котором может распространяться только TM_1^0 -и TE_1^0 -волна при фиксированном a и $\frac{d}{l}$ с ростом $\frac{l}{a}$ уменьшается при $\frac{l}{a} > 1$ и остается постоянным при $\frac{l}{a} \leq 1$.

В табл. 2 показано изменение диапазона частот от $\frac{l}{a}$ для TM⁰₁-волны при u = 0,9. При больших $\frac{d}{l}$ диапазон частот сдвигается в сторону меньших частот.

Таблица 2

$\frac{l}{a}$	≼۱	2	3	5	10
$\frac{af_{TM_{\mathbf{x}}^{u}}}{c}$	0,5÷1	0,5 -:- 0,705	0,5-:-0,604	0,5-:-0,536	0 ,5 ÷0,51

Для TE₁^o-волны диапазон частот, в котором может распространяться только TE₁^o-волна, сдвигается в сторону больших частот, т. е., с точки зрения широкополосности, удобнее работать при $\frac{l}{a} \leq 1$.

Распространение TM_m^p -и TE_m^p -волн исследовалось при следующих параметрах структуры: $\frac{l}{a} = 0,1; 0,5; 1; 5; 10; -0,999 < u < +0,999$ в диапазоне рабочих частот 0,2 < x < 20. Исследования показали, что TM_m^p -и TE_m^p -волны распространяются вдоль оси *ог* с фазовой скоростью, большей скорости света в свободном пространстве с данным диэлектрическим заполнением и с затуханием в направлении распространения. Поведение пространственных гармоник в направлении оси *ох* зависит от типа волны, от того, на какой гармонике происходит резонанс и от параметра $\frac{l}{a}$. Часть гармоник излучает энергию по мере распространения, остальные гармоники являются неизлучающими волнами (амплитуда убывает с ростом *x* при *x* > 0).

Так, при $\frac{l}{a} = 1$ и m < 3 при резонансе на 0-ой гармонике излучает только 0-ая гармоника. при m = 3 излучают 0-ая и 1-ая гармоники и т. д. С ростом m число излучающих гармоник увеличивается. Все остальные гармоники являются непзлучающими. При резонансе на p-той гармонике излучают все гармоники от 0-ой до p-той включительно (и выше при m > 3).

С ростом $\frac{l}{a}\left(\frac{l}{a}>1\right)$ число излучающих гармоник при данных *m* и *p* увеличивается. Так, при $\frac{l}{a}>2$ у ТМ⁰₁-волны будут излучать 0-ая и 1-ая гармоники, при $\frac{l}{a}>4$ 0-ая. 1-ая. 2-ая и т. д. Если для данного типа волны излучают несколько гармоник, то они излучают под разными углами, но с одинаковой частотой.

Необходимо отметить, что в данной работе решается задача о собственном режиме. Поэтому выявляется лишь возможность излучения, а само излучение получится только при наличии притока энергии извне.

Исследовалась зависимость величины затухания и излучения TM_1^0 -и TE_1^0 -волны от параметров структуры и частоты. Установлено, что затухание и излучение TM_1^0 -и TE_1^0 -волн тем больше, чем больше $\frac{l}{a}$ (l и $\frac{d}{T}$ фиксировано) и чем больше ширина щели при фиксированном $\frac{l}{a}$. Величина излучения (v_0'') определяется лишь геометрическими параметрами структуры и не зависит от диэлектрического заполнения среды и частоты. Величина затухания при фиксированных геометрическими парараметрах структуры и не зависит от диэлектрического заполнения среды и частоты. Величина затухания при фиксированных геометрических параметрах структуры тем больше, чем больше отношение $\frac{z^2z''+2z_0'z''}{z^2z''-(z_0')^2'}$ На рис. 4 показано, как меняется затухание TM_1^0 -и TE_1^0 -волн с ростом ширины щели при различных значениях диэлектрической проницаемости среды при $\frac{l}{a} = 1$, $\varkappa = 0,8$. Из графиков видно, что при данной ширине щели и данном диэлектрическом заполнении среды затухание TE_1^0 -волны значительно больше, чем TM_1^0 -волны.

В табл. З и 4 приведены значения относительных амплитуд пространственных гармоник TM_1^0 -и TE_1^0 -волн $\left(\frac{l}{a} = 1\right)$ для различных значений ширины щели. Как видно из таблиц, амплитуды пространственных гармоник по отношению к амплитуде нулевой гармоники увеличиваются с ростом ширины щели, причем при одной и той же ширине щели амплитуды пространственных гармоник — TE_1^0 волны значительно выше, чем TM_1^0 -волны.

Исследования показали также, что с ростом ширины щели $\left(\frac{l}{a} = \text{const}\right)$ угол излучения (по отношению к осн *оz*) и фазовая скорость TE_1^0 -волны увеличиваются, а TM_1^0 -волны уменьшаются, добротность уменьшается как для TM_1^0 -волны, так и для TE_1^0 -волны, а волновое сопротивление увеличивается.

Результаты исследований показали, что рассматриваемая структура может найти применение как многопроводная передающая линия, а также как излучающая система. Так, при состветствующей рабочей частоте можно выбрать параметры системы таким образом, что в ней смогут распространяться только ТЕМ-волны в широком диапазоне частот (диапазон частот тем больше, чем выше $\frac{l}{a}$). Как было показано, эти волны при любых параметрах системы распространяются с фазовой скоростью, равной скорости света в свободном пространстве, без излучения

Распространение электромагнитных нолн...

3

ŝ
50
=
=
F.
0
-
1

 $\mathsf{IM}_{\mathsf{I}}^{0}-\mathsf{BOJHA} \quad \left(\frac{l}{a}=\mathsf{I}\right)$

.

 $\frac{d}{l} = 0.014$	$\frac{d}{l} = 0,23$	$\frac{d}{l} = 0,334$	$\frac{d}{l} = 0.42$	$\frac{d}{l} = 0,5$	$\frac{d}{l} = 0.58$	$\frac{d}{l} = 0.67$	$\overline{t} = 0,775$	$\frac{d}{l} = 0,985$
0,00025	0,0646	0,1308	0,1966	0,2605	0,321	0,376	0,402	0,422
+86'68+	+80,88	-1 89,88	+89,68°	+89,33°	+88,75°	+87,8°	+86,08°	+74,99°
0,00024	0,0525	0,0821	0,0863	0,067	0,0205	0,0375	0,1208	0,199
+89,99°	+89.88°	+89,88°	+89,68°	+89,29°	+88,35	+88,54°	-+ 86,74°	+ 76,7°
u,00024	0,0357	0,0277	0,0048	0,041	0,061	0,046	0,018	0,131
+89,99°	+89,97°	4 -89,87°	+89,9°	+89,39°	+88,83°	+87,89°	+87,41°	+76,98°
0,00024	0,01820	0,0092	0,0030	0,024	0,0101	0,042	0,025	.%0
 +89,99°	+89,97°	+89,92°	+89,72°	+89,34°	+89,64°	+88,35°	+86,31°	+77,08°

74

9
Ħ
H
5
6
-
a 6.1

$\frac{d}{l} = 0.985$	0,97	-0,003°	0,88	-0,013°	0,74	-0,032	0,572	-0,06°
$\frac{d}{l} = 0,775$	6'0	-0,012	0,76	0,05°	0,52	-0,14°	0,27	-0,39°
$\frac{d}{l} = 0.67$	18,0	-0,0340°	0,55	-0,17°	0,188	-0,78°	0,058	+2,3°
$\frac{d}{l}=0.58$	0,808	-0,0179°	0,357	-0,30°	0,016	+10,6°	0,126	0,72°
$\frac{d}{l}=0.5$	0,726	-0'03	0,193	-0,82	0,11	+ 1,170°	0,067	+0,13°
$\frac{d}{l} = 0,42$	0,645	-0,115°	0,056	2,66°	0,12	+0,55°	0,018	+2,15°
$\frac{d}{l} = 0,334$	0,553	-0,135°	0,05	+2,26°	0,067	0,117°	0,061	+0,58°
$\frac{d}{l} = 0.23$	0,437	-0,14°	0,116	+0,54°	0,016	4 1,30°	0,025	+0,1°
$d_{l} = 0.014$	0,146	-0,059°	0,065	+0,012°	0,042	+0,022°	0,031	4-0,025°
	14 10 10	91 - 90	$\left \frac{b_2}{b_0} \right $	ç ₂ — ç ₀	\$0000000000000000000000000000000000000	9a — 9u	$\left \frac{b_4}{b_0} \right $	ç₄ — 7₀

Распространение электромагнитных воля...

 TE_{1}^{0} -волна $\left(\frac{l}{a}=1\right)$

и с затуханием, определяемым лишь потерями в диэлектрике. Энергия этой волны полностью сосредотачивается в пространстве между решеткой и экраном. Т. е. исследуемая система может служить многопроводной передающей линией для ТЕМ-волны.

В данной структуре могут распространяться также ТМ^{*p*}_{*m*}-и ТЕ^{*p*}_{*m*}-волны, но лишь при частоте, большей критической частоты для данного типа волн (критическая частота определяется геометрическими парамстрами системы и диэлектрическим заполнением среды). Так как ТМ^р_m-волны имеют составляющую тока вдоль оси *ог*, то

наличие решетки значительно меньше влияет на распространение ТМ"волн, чем на ТЕ^{*p*}-волны. ТМ⁰-волна имеет наименьшую критическую частоту. Если применять данную систему в качестве передающей линии для TM_1^0 -волны, то лучше выбирать $\frac{l}{a}$ и $\frac{d}{l}$ малыми, так как, чем меньше $\frac{l}{a}$ и $\frac{d}{l}$, тем меньше затухание и излучение.

Если применять данную систему как излучающую для TM⁰-и TE⁰воли, то нужно выбирать $\frac{l}{a}$ большее, однако так, чтобы $\frac{l}{a} < 2$ для уменьшения бокового излучения. Выбором соответствующей ширины щели $\left(\frac{d}{l}\right)$ можно регулировать величину и направление излучения при данном $\frac{t}{a}$, а также определить минимальную длину антенны, на которой ТМ¹-или ТЕ¹-волна полностью излучится.

ЛИТЕРАТУРА

B. A. Сухов. Радиотехника и электроника, 9, 2, 360, 1964.
L. O. Goldstone, A. A. Oliner, Leaky Waves Antennas I: Recfangulal Waveguides, IRE Trans, v AP-7 № 4 October 1959.
R. C. Honey, Horisontably Polarized Long — Slot Array, Stanford Res. Inst. Menlo Park Colif Techn Rept № 47 August 1954.

4. R. C. Honey, A. Flush Mounted Horisontally Polarized Directional Antenna, Stanford Res. Inst. Menlo Paru Colif Techn Rept № 54 January 1956.

5. В. Н. Зуницына. Сб. «Радиотехника», вып. 4. Изд-во ХГУ, Харьков, 1967. 6. З. С. Агранович, В. А. Марченко, В. П. Шестопалов. ЖТФ, 326. 4, 1962.