ПРЯМОУГОЛЬНЫЙ ВОЛНОВОД С ПОПЕРЕЧНЫМИ ЩЕЛЯМИ. ИЗЛУЧАЮЩИЙ В ПЛССКО-ПАРАЛЛЕЛЬНУЮ ОБЛАСТЬ

Л. И. Белоусова, В. Н. Злуницына

Харьков

В антенной технике значительное внимание уделяется различным устройствам с бегущей волной (щелевая антенна бегущей волны и др.). Эти устройства состоят из обычного цилиндрического или прямоугольного волновода, в котором внутреннее поле связано с некоторой внешней областью или свободным пространством посредством непрерывной аксиальной щели или системы периодических поперечных отверстий [1-2].

В данной работе исследованы свойства электромагнитных волн в прямоугольном волноводе, связанном с полубесконечным плоско-параллельным волноводом. В качестве механизма связи служат периодические поперечные щели в стенке прямоугольного волновода. Для анализа дашной структуры использован метод работы [3].

Исследуем собственные волны структуры, изображенной на рис. 1,a, в предположении, что стенки волноводов обладают идеальной проводимостью и смежная стенка в плоскости x = 0 является бесконечно тонкой. В силу периодичности структуры в направлении распространения волны поле может быть представлено в виде

$$\vec{E}(x, y, z) = e^{ih_{z}z}\vec{E}(x, y, z);$$

$$\vec{H}(x, y, z) = e^{ih_{z}z}\vec{H}(x, y, z),$$
(1)

где $\vec{E}(x, y, z)$ и H(x, y, z) периодичны относительно z с периодом l и могут быть разложены в ряд Фурье. Временной множитель $e^{i\omega t}$ здесь и далее опущен.

Рассмотрим случай Е- и Н- поляризации, когда в направлении у имеется только Е- или только Н- составляющая поля соответственно. Подчиняя поля точным граничным условиям на стенках волноводов, получаем систему функциональных уравнений относительно коэффициентов разложения поля в ряд Фурье. Путем определенных преобразований эта система сводится к задаче Римана — Гильберта, окончательное решение которой представляется бесконечной системой однородных линейных алгебранческих уравнений относительно коэффициентов Фурье

$$\sum_{n}^{\infty} X_{n} \left\{ \frac{(n)}{n} z_{n} W_{n}^{n} \rightarrow \delta_{nn} \right\} = 0,$$

$$(m - 0) \pm 1; \pm 2 \dots), \qquad (2)$$

r.:!e

$$z_{n} = 1 \pm \frac{|n|}{\sqrt{n}} \frac{r_{in}!}{2\pi (n+s)} \begin{cases} \frac{1}{1 - e^{2i \tau_{in} a}} & \text{для } E\text{-волн,} \\ \frac{1}{1 - e^{2i \tau_{in} a}} & \text{для } H\text{-волн,} \end{cases}$$

$$\tilde{r}_{in} = \int \frac{1}{k^{2} - h_{a}^{2} - \left(\frac{m\pi}{b}\right)^{2}}; \quad h_{a} - \frac{2\pi}{l} (n+s); \quad W_{m}^{a} - V_{m}^{a} - \tilde{V}_{in}^{a} \frac{R_{m}}{\tilde{R}_{in}}.$$

 V_{m}^{n} ; R_{m} ; \tilde{V}_{13}^{n} ; \tilde{R}_{13} выражаются через функции и полиномы Лежандра от аргумента $u = \cos \theta$ и вы-

$a-\frac{l}{a}=0.3;$	$\frac{d}{a}$	0,24;
$\delta = \frac{l}{a} = 0.3;$	$\frac{d}{a}$	0.075

и полиномы Лежандра от аргумента $u = \cos \theta$ и вычислены в [3, 4], $\theta = \frac{\pi d}{l}$ для *E*-волн и $\theta = \frac{\pi (l-d)}{l}$

для Н-волн.

Равенство нулю определителя системы (2) является точным дисперсионным уравнением для *E*- и *H*- собственных волн структуры

$$\det\left\{\frac{|n|}{n}\varepsilon_n W_m^n - \delta_{mn}\right\} = 0 (3)$$

Из решения (3) определяем постоянные распространения собственных волн, а из (2) находим соответствующие наборы амилитуд Фурье.

Собственные волны исследуемой структуры являются волнами типа $E_{p:n}$ и H_{rmi} , где индексы p и mхарактеризуют периодичность поля в направлениях x и y. Эти волны являются возмущением соответствующих типов волн закрытого волновода. При $d \rightarrow 0$ дисперсионное уравнение (3) дает набор действитель-

ных значений постоянных распространения собственных волн регулярного волновода

$$\gamma_x = \frac{p\pi}{a}; \quad \gamma_y = \frac{m\pi}{b}.$$

Наличие щелей вызывает затухание волны за счет потерь на излучение. Постоянные распространения h_0 и γ_x становятся комплексными величинами, реальные части которых близки к соответствующим значениям для закрытого волновода, а мнимые части определяются шириной щели и длиной волны. Полученные уравнения (2) и (3) позволяют исследовать как структуру со щелями в узкой стенке волновода (рис. 1,*a*), так и структуру со щелями в широкой стенке (рис. 1,*b*). Для обоих случаев подробно

Рис. 2. Зависимость величины затухания (сплошные линия) и излучения (пунктирные линии) основной волны от частоты для структуры, изображенной на рис. 1, а.

(1)	$\frac{1}{a} = 0.3;$	$\frac{d}{u} = 0.24;$
(2)	$\frac{l}{a} = -0.3;$	$\frac{d}{a} = -0.15;$
(3)	$\frac{l}{a} = 0.1;$	$\frac{d}{a} = 0.075;$
(1)	$\frac{1}{a} \sim 0.3;$	$\frac{d}{a} = 0,075;$
(5)	$\frac{1}{a} = 0.5;$	$\frac{d}{d} = 0.075$

исследовались характеристики волны, являющейся возмущением обычной H_{10} -волны регулярного волновода (в принятых здесь обозначениях такой волной в случае структуры рис. 1, а является E_{10} -волна, а в случае структуры рис. 1, б H_{10} -волна).

Для основной волны регулярного прямоугольного волновода распределение токов таково, что в узкой стенке имеются только поперечные токи а в широкой продольная и поперечная составляющие тока. В структуре рис. 1.а щели проходят параллельно направлению токов, поэтому наличие узких щелей почти не изменяет структуры поля и эквивалентно расширению волновода. По мере увеличения ширины щелей критическая частота основной волны, определяемая как

$$k_{\rm Kp} = \int \frac{\gamma^{*2}}{\gamma^{*2}_x - \gamma^{*2}_y - \gamma^2_y},$$

уменьшается, а излучение в плоскопараллельную область и затухание волны вдоль направления распространения возрастают.

Щели в структуре рис. 1, δ пресекают токи в верхней стенке волновода, поэтому возбуждаются E_z - и H_y -составляющие поля, что существенно изменяет структуру поля. Даже при очень узких щелях критическая частота основной волны резко увеличивается и появляется значительное излучение волны во внешнюю область.

Рис. 3. Зависимость величины затухания (сплошные линии) и излучения (пунктирные линии) основной волны от частоты для структуры, изображенной на рис. 1, 6.

(1)	$\frac{l}{a} = 0.5;$	$\frac{d}{a}$	0.075;
(2)	$\frac{l}{a} = 0.3;$	$\frac{d}{a}$ -	0, 075;
(3)	$\frac{l}{a} = 0.3;$	$\frac{d}{a}$	15.

Уравнения (2) и (3) исследовались на ЭВМ. Некоторые численные результаты приведены на рис. 1, 2, 3 и в табл. 1, 2.

На рис. 1 изображены дисперсионные зависимости низшего типа волны в структурах рис. 1, a и рис. 1, b соответственно. Для сравнения пунктиром проведена дисперсионная кривая закрытого волновода. Фазовая скорость основной волны для обеих структур определяется шириной щели и практически не зависит от параметра $\frac{l}{a}$. С ростом ширины щели фазовая скорость уменьшается за счет увеличения излучения волны во внешнюю область. a)

Т	а	6.7	И	п	a	1
•	•••		•••			

		a = 0,6 i.		a = 1.			
	$\frac{l}{a} = 0.3;$	$\frac{l}{a} = 0.3$:	$\frac{l}{a} = 0,5;$	$\frac{l}{a} = 0.3;$	$\frac{l}{u} = 0,3;$	$\frac{l}{a} = 0.5;$	
	$\frac{d}{a} = 0,075$	$\frac{d}{a}=0,15$	$\frac{d}{a}=0.075$	$\frac{d}{a} = 0.075$	$\frac{d}{a} = 0.15$	$\frac{d}{a}$ 0.075	
$ \begin{vmatrix} \underline{b_1} \\ \overline{b_n} \\ \overline{b_n} \\ \underline{b_{-1}} \\ \overline{b_n} \\ \overline{b_n} \\ \varphi_{-1} - \varphi_n \\ \underline{b_2} \\ \overline{b_0} \\ \end{vmatrix} $	0,0221 90,0° 0,0225 —90,0° 0,169	0,0722 89,99° 0,0787 89,99° 0,0159	0,0139 89,99 ² 0,0140 89,99° 0,0127	0,0222 86,7 0,0232 85 ,2 ⁵ 0,0170	0,0732 89,9° 0,0855 89,9 0,0167	0,0142 8 9 ,9 0,0146 89,9 0,0128	
$\begin{array}{c} \varphi_2 - \varphi_0 \\ \left \frac{b_{-2}}{b_0} \right \\ \varphi_7 - \frac{b_3}{b_0} \\ \varphi_3 - \varphi_0 \\ \left \frac{b_{-3}}{b_0} \right \\ \varphi_{-3} - \varphi_0 \end{array}$	90,0° 0,0177 90,0° 0,0102 90,0° 0,0112 90,0°	89,9° 0,0222 89,9° 0,0130 89,9° 0,0125 89,9°	89,9° 0,0129 89,9° 0,0108 90,0° 0,0119 89,9°	84,5° 0,0190 77,3° 0,0103 82,7° 0,0116 61,3	89,9* 0,0230 89,9* 0,0138 89,9 0,0130 89,9	89,9° 0,0135 - 89,9 0,011 - 89,9° 0,0120 89,9	

6)

		u = 0,6)		$a = \lambda$			
	$\frac{l}{u}=0,3;$	$\frac{l}{a}=0,3;$	$\frac{l}{a}=0,5;$	$\frac{l}{a}=0,3;$	$\frac{l}{a}=0,3;$	$\frac{l}{a}=0,5;$	
	$\frac{d}{u} = 0,075$	$\frac{d}{a} = 0.15$	$\frac{d}{a}=0.075$	$\frac{d}{a}=0,075$	$\frac{d}{a} = 0,15$	$\frac{d}{a} = 0,075$	
$\left \frac{b_1}{b_2}\right $	0,390	0,676	0,261	0,358	0,653	0,237	
$\varphi_1 \leftarrow \varphi_0$	-1,35	1,02°	1,62	—0 ,97 °	0 ,738°	—1,34°	
$\left \frac{b_{-1}}{b}\right $	0,510	0,770	0,417	0,558	0,797	0,466	
9-1- 90	1,28°	0,97°	1,62°	0 ,9 °	0 ,684 °	1,35°	
$\frac{b_2}{b}$	0,130	0,138	0,126	0,130	0,119	0,119	
$\varphi_2 - \varphi_1$	0 ,351°	-4,5°	0,666°	0 ,8 3°	—3,51°	-0,684°	
$\frac{b-2}{b}$	0,108	0,231	0,131	0,09	0,260	0,122	
Ψ- <u>3</u> -Ψ0	—1,71°	3,38°	0,503°	—1,8°	2,28^	-0 ,88 °	
$\frac{b_3}{b}$	0,0178	0,127	0,0859	0,024	0,128	0,065	
φ ₃ — φ	6,3°	0,648°	0,072°	2,88°	0,3 06°	0 ,129°	
$\left \frac{b}{b}\right $	0,01	0,108	0,0524	0,021	0,098	0,045	
$\varphi_{-n} - \varphi_{-n}$	15,5°		1,78	5,4°	1,8	-2,18°	
			1				

На рис. 2 и 3 приведены зависимости величины затухания основной волны в направлении распространения (сплошные линии) и излучения ее в плоско-параллельную область (пунктирные линии) от частоты для структур, изображенных на рис. 1,а и 1,6 соответственно. Для обеих структур излучение в большом днапазоне частот почти не зависит от частоты, а затухание с ростом частоты убывает.

В таблицах 1,а и б приведены амплитудные спектры основной волны для случаев рис. 1,а и 1,6 при различных параметрах структуры.

В таблице 2 приведены характеристики излучения и затухания высших типов воли в структуре, изображенной на рис. 1,а.

Таблица 2

	Е ₁₀ -волна (<i>а</i> 0,62)			Е ₂₆ -волна (а — 1,27)			// ₀₁ -волна (а == 1,27)		
$\frac{1}{a}$	т,"a	;" ₀ u	c c	4, "a	—>" a	υ<u>φ</u> c	۲, [~] а	—,,"a	; <u>φ</u> c
0,25 0,333 0,417 0,5	3,3 10 ⁻³ 1,39 10 ⁻³ 5,74 10 ⁻³ 1,97 10 ⁻²	$\begin{array}{r} 3.39 \ 10^{-5} \\ 9.55 \ 10^{-1} \\ 5.14 \ 10^{-3} \\ 1.47 \ 10^{-2} \end{array}$	1,8 1,77 1,72 1,67	1,39 10 ⁻¹ 6,1 - 10 ⁻⁴ 3,56 - 10 ⁻² 1,39 - 10 ⁻¹	9,55 10 ⁻³ 4,18 · 10 ⁻³ 2,56 · 10 ⁻² 1,07 · 10 ⁻¹	1,8 1,77 1,71 1,64	0,487 0,885 1,13 1,3	0,244 0,419 0,53 0,61	2,22 2,31 2,32 2,35

$$\frac{l-d}{a} = 0.208$$

ЛИТЕРАТУРА

1. L. O. Goldstone, A. A. Oliner. IRE Transactions on Antennas and Propagation, vol. AP-7, № 4, October 1959. 2. Richard F. Hyneman. IRE Transactions on Antennas and Propagation, Vol.

AP-7, № 4, October, 1959.

3. З. С. Агранович, В. А. Марченко, В. П. Шестопалов. ЖТФ, ХХХП, вып. 4, 381, 1962.

4. А. П. Адонина, В. П. Шестопалов ЖТФ, ХХХШ, вып. 6, 641, 1963.