## ИЗМЕРЕНИЕ МЕТОДОМ КОГЕРЕНТНЫХ ЧАСТОТ НЕРЕГУЛЯРНОЙ Составляющей набега фазы сигналов исз за счет неодкородкостей ионосферы

## В. А. Мисюра, Г. К. Солодовников, В. М. Мигунов, Г. А. Бирюков, М. Н. Чалая,

## Харьков

Методом когерентных частот с высокой точностью измерена нерегулярная составляющая набега фазы δΔφ сигналов ИСЗ «Электрон-1», «Космос-93» и «Космос-95», обусловленная влиянием неоднородностей ионосферы, расположенных между спутником и наземным пунктом наблюдения.

Получены гистограммы интенсивностей  $\delta \Delta \varphi$  и эффективных размеров неоднородностей *d* вдоль орбит спутников в различное время суток для интервалов высот 400 --- 500 км.

Рассчитан также коэффициент корреляции между δΔφ и d.

Исходные соотношения и методика обработки. Для непосредственно измеряемой приведенной разности фаз Ф когерентных радиоволн, излучаемых передатчиками спутников и геофизических ракет, известно [1] общее приближенное соотношение геометрической оптики

$$\Phi = k\Delta \varphi + \Phi_{\rm or} \tag{1}$$

где

$$\Delta \varphi = -k_0 \Delta L - \tag{2}$$

набег фазы волны в ионосфере.

$$\Delta L = \frac{1}{2} \int_{0}^{R} \alpha \, dR - \tag{3}$$

фазовое запаздывание радиоволн в ионосфере на расстоянии R между точкой наблюдения A и излучателем B;

k — константа, зависящая от соотношения когерентных частот;

 $k_0 = \frac{2\pi}{\lambda}$  — волновое число для вакуума;

*Φ*<sub>0</sub> — неизвестное начальное значение *Φ*, относящееся к началу регистрации.

Величина а определяет коэффициент преломления для ионосферы  $n(n = \sqrt{1+\alpha})$  и в рассматриваемом случае при  $|\alpha| \ll 1$  с точностью до малых порядка  $|\alpha|^2$  принято  $n \approx 1 + \frac{\alpha}{2}$ .

В пренебрежении соударениями и влиянием геомагнитного поля

функция « связана с электронной концентрацией ионосферы N и частотой f радиосигнала соотношением

$$a = -k_1 N f^{-2}, \tag{4}$$

Ъ

Рис. 1

(9)

где  $k_1$  — коэффициент, зависящий от выбора единиц (для N в единицах.  $10^5 \ \mathfrak{s}_A \cdot \mathfrak{c}_M^{-3}$  и f в  $M\mathfrak{e}_{\mathfrak{q}}; k_1 = 8,07$ ).

В выражении (3) величина а, а следовательно, и N, является функцией трех координат и времени, а также может содержать регулярную

и нерегулярную ( $\delta$ ) составляющие. В силу линейных связей (1) — (4) между величинами  $\Phi$ ,  $\Delta L$ ,  $\alpha$  и N нерегулярной  $\delta N$  составляющей электронной концентрации, обусловленной неоднородностями N ионосферы, будут соответствовать нерегулярные ( $\delta$ ) составляющие этих величин, входящие в (1), (2), (3) аддитивно. Следовательно, формулы для нерегулярных ( $\delta$ ) составляющих  $\delta \Phi$ ,  $\delta \Delta \varphi$ ,  $\delta \Delta L$  и  $\delta \alpha$  будут иметь тот же вид (1) — (4), если всюду заменить  $\alpha$ на  $\delta \alpha$ 

$$\delta \Phi = k \, \delta \Delta \varphi = - k_0 k \, \delta \Delta L; \tag{5}$$

$$\delta\Delta L = \frac{1}{2} \int_{0}^{R} \delta \alpha \, dR = -\frac{k_1}{2f^2} \, \delta N_{0L} \,, \qquad (6)$$

где

$$\delta N_{0L} = \int_{0}^{R} \delta N dR -$$
 (7)

нерегулярная составляющая полного содержания электронов в трубке единичного сечения на участке между *A* и *B* (рис. 1). Из последних соотношений очевидно следуют выражения для дисперсий величин, например:



где

 $K = \delta \overline{N_1} \delta \overline{N_2} -$ 

корреляционная функция флуктуаций электронной концентрации ионосферы (индексы 1 и 2 относятся к произвольным точкам на прямой между точкой наблюдения и излучателем). Величины  $\delta \Phi$  (или ( $\overline{\delta \Phi^2}$ ) могут быть измерены методом когерентных частот с весьма высокой точностью [2]; с этой же точностью может быть измерен и нерегулярный набег фазы в ионосфере  $\delta \Delta \varphi$ , (или ( $\overline{\delta \Delta \varphi}$ )<sup>2</sup>).

По регистрациям длительности флуктуации  $\delta t = \frac{d}{v}$  легко определяется ее эффективный размер d (или  $\sqrt{d^2}$ ) вдоль орбиты ИСЗ по извествой из орбитных данных скорости спутника v, которую в пределах d(за  $\delta t$ ) всегда можно считать постоянной. Более характерной, чем  $d_{t}$ . величиной является угловой размер  $\delta \varepsilon$  (угол  $B_1AB_2$  на рис 1) (или  $V(\overline{c\varepsilon})^2$ ) флуктуаций  $\delta\Delta \varphi$ . Среднеквадратичное значение ее также может быть  $\delta_k \Delta \varphi = V(\overline{\delta \Delta \varphi})^2$ . Величина  $\delta \varepsilon$  ( $\delta_k \varepsilon$ ) при известных орбитных данных легко определяется через d ( $\delta_k d$ ), а следовательно, через  $\delta t$ , получаемое из экспериментальных кривых  $\Phi(t)$ .

Как известно, ионосфера статистически анизотропная и статистически неоднородная среда. Обычно чем больше d, тем существенней влияние анизотропии на эфректы. вызываемые неоднородностями (в том числе и на  $\delta\Delta\varphi$ ).

Параметры анизотропии неоднородностей ионосферы, как и корреляционная функция K, изучены пока крайне недостаточно, поэтому иногда ограничиваются некоторым эффективным размером a, считая приближенно ионосферу статистически однородной и изотропной, а корреляционную функцию в (8) соответственно априори гауссовой [3]

$$K = K_{M}e^{-\frac{d_{R_{1,2}}^{2}}{a^{*}}},$$
 (10)

здесь  $K_M = \delta \overline{N^2}$ , когда обе точки 1 и 2 на луче лежат в ионосфере



Рис. 2

(в области, занятой неоднородностями) и  $K_M = 0$ , когда хотя бы одна из этих точек лежит вне области неоднородностей. После подстановки (10) в (8) получаем

$$(\overline{\delta\Delta L})^2 = 16,24 \sqrt{\pi} f^{-4} d_R a \, (\overline{\delta N})^2, \tag{11}$$

где

$$d_{R} = \begin{cases} R_{k} - R_{0} & \text{при } R > R_{k} \\ R - R_{0} & \text{при } R_{0} < R < R_{k} \end{cases} -$$
(12)

расстояние, пройденное волной в неоднородностях (в ионосфере);  $R_0$  и  $R_*$  расстояние от A до ионосферы и верхней границы ее соответственно (f, Meu;  $\sqrt{\delta N^2}$ , 10<sup>5</sup> эл.см<sup>-3</sup>). Приближенная формула (11) получена в предположении, что  $d_R \gg a$  с использованием формул для дисперсии  $(\delta \Delta \varphi)^2$  и функции корреляции флукгуаций фазы вида

$$(\overline{\delta\Delta\varphi})^{2} = \frac{\sqrt{\pi} k_{0}^{2}}{4} (\overline{\delta\alpha})^{2} ax \begin{cases} R - R_{0} & \text{при } R < R_{k} \\ R_{k} - R_{0} & \text{при } R > R_{k} \end{cases},$$
(13)

$$\overline{\delta\Delta\varphi_1\,\delta\Delta\varphi_2} = \frac{\sqrt{\pi}}{4} \overline{(\delta\alpha)^2} e^{-\frac{d_{R_{1,2}}^2}{a^2}},\tag{14}$$

полученных в [3] с учетом дифракции.



Рис. 3

В важном для ионосферы случае крупных анизотропных неоднородностей, число которых на луче между *A* и *B* обычно недостаточно для применения статистического подхода по ансамблю, этот вопрос будет являться предметом другой работы.



Результаты измерений. Ниже приводятся некоторые результаты опытов, полученные при помощи ИСЗ «Электрон-1», «Космос-93» и «Космос-95» при низкой активности Солнца в различное время суток, включая восход Солица. Прежде всего отметим характер первичных данных, непосредственно полученных из эксперимента. На рис. 2 даны типичные образцы графиков приведенной разности фаз когерентных волн в функции времени пролета ИСЗ. Из графиков рис. 2 видны нерегулярные отклонения  $\delta \Phi$  фазы  $\Phi$  от регулярного хода, обусловленные наличием неоднородностей ионосферы.

Рис. 3 и 4 иллюстрируют спектры нерегулярных отклонений  $\delta \Phi$  и размеров *d* неоднородностей для различного времени суток в феврале — марте 1964 г. («Электрон-1»). Характер изменения спектров  $\delta \Phi$  и *d* в

зависимости от времени суток сходен, что свидетельствует о наличии положительной корреляции между  $\delta \Phi$  и *d*. В утренние часы имеется сстрый максимум в спектрах. К полудню значения  $\delta \Phi$  и *d* возрастают, достигая больших значений ( $\delta \Phi \approx 10^2$  рад,  $d \approx 330$  км).

Естественно, что сравниваемые спектры построены для сходных положений спутника и состояний ионосферы.

Измеренные значения оф приведены к частоте 20 Мгц.

Рассчитан коэффициент корреляции между отклонениями фазы  $\delta \phi$  от регулярного хода  $\Phi$  и размерами неоднородностей d по данным наблюдений за спутниками «Электрон-1» ( $Z_B \approx 420-500 \ \kappa m$ ) и «Космос-93, 95» ( $Z_B \approx 250-300 \ \kappa m$ ) для различного времени суток. Коэффициент этот оказался равным 0,88 и почти не зависит от времени суток. Расчет коэффициентов корреляции производился графически ]4].

## ЛИТЕРАТУРА

1. В. А. Мисюра, Г. К. Солодовников, В. М. Мигунов. Космические исследования», 111, 4, 1965, 595.

2. Я. Л. Альперт, В. Б. Белянский, А. Ф. Кутяков. Геомагнетизм и аэрономия, З, 1, 1963, 157.

3. Л. А. Чернов. Распространение воли в среде со случайными неоднородностями. Изд-во АН СССР, М, 1953.

4. А. Уорсинг, Д. Гефнер. Методы обработки экспериментальных данных. Изд-во иностр. лит-ры, 1953.