НЕКОТОРЫЕ ВОПРОСЫ СТАТИСТИЧЕСКОЙ ТЕОРИИ АНТЕНН БЕГУЩЕЙ ВОЛНЫ

Я. С. Шифрин, Л. Г. Корниенко

Харьков

1. Как известно, сущность статистической теории антенн сводится к исследованию параметров антенн при условии, что амплитудно-фазовое распределение тока (или поля) в антенне является случайным. Основы такой теории были развиты в работе [1] на примере линейной синфазной антенны.

Целью настоящей статьи является распространение некоторых результатов названной работы на антенны бегущей волны (АБВ).

В принципе методика исследования статистики поля АБВ остается такой же, как и для синфазных антенн. Однако в расчетном отношении задачи существенно различаются, так как характер ошибок в этих двух системах различный. В синфазных антеннах ошибки в амплитудно-фазовом распределении источников имеют локальный характер. В антенна: бегушей волны наряду с локальными сшибками имеются и нелокальные — возникшие в каком-то месте случайные возмущения передаются бегущей волной во все последующие излучающие элементы.

Как было показано в работе [2], локальные ошибки в АБВ приводят к тем же эффектам, что и в синфазных системах. Поэтому представляет интерес исследование влияния нелокальных ошибок. Ограничимся рассмотрением влияния нелокальных фазовых ошибок, играющих обычно значительно бо́льшую роль, чем ошибки амплитудные.

2. Рассмотрим линейную систему непрерывно распределенных однотипных и одинаково ориентированных источников, возбуждаемых бегущей волной. Пусть длина ее L. При отсутствии затухания в системе комплексный множитель системы

$$f(\theta) = \int_{0}^{L} e^{-jk_1 z + jk_2 \cos \theta} dz, \qquad (1)$$

где k₁ — волновое число, характеризующее распределение фаз вдоль системы;

$$k=\frac{2\pi}{\lambda};$$

в — угол, отсчитываемый от оси системы.

При написании (1) амплитуда источников принята равной единице.

Допустим, что в силу тех или иных причин параметры линии меняются случайным образом. Будем считать эти изменения достаточно плавными, так что в каждом сечении волновое число k_1 определяется параметрами линии в этом же сечении. Тогда вместо выражения (1) для комплексного множителя системы имеем следующее выражение:

$$f(\theta) = \int_{0}^{L} e^{-i\int_{0}^{z} k_{1}(z') dz' + jkz \cos \theta} dz.$$
(2)

Диаграмма направленности по мощности

1

$$|f(\theta)|^{2} = \int_{0}^{\infty} \int e^{\int_{z}^{z_{1}} k_{1}(z')dz' + jk(z-z_{1})\cos\theta} dzdz_{1}.$$
 (3)

Будем далее считать $k_1(z)$ нормальной случайной функцией со средним значением $\overline{k_1(z)} = k_0$, дисперсией z^2 и нормированной корреляционной функцией в экспоненциальной форме $r = e^{\frac{|z-z_1|}{p}}$, где p — радиус корреляции волнового числа. Для простоты примем, что значение k_0 равно теоретическому (невозмущенному) значению волнового числа.

Усредняя соотношение (3) и учитывая, что [2]

$$\overline{\left[\exp j\int_{z}^{z_{1}}\Delta k_{1}(z')dz'\right]} = \exp\left\{-\frac{1}{2}\left[\int_{z}^{z_{1}}\Delta k_{1}(z')dz'\right]^{2}\right\} = \exp\left\{-\rho^{2}\sigma^{2}\left[\frac{|z-z_{1}|}{\rho} + e^{-\frac{|z-z_{1}|}{\rho}} - 1\right]\right\},$$
(4)

находим следующее выражение для средней диаграммы направленности по мощности:

$$\frac{\overline{|f(\theta)|^2}}{|f(\theta)|^2} = \int_0^L \int_0^{p^{2\xi^2} \left[1 - \frac{|z - z_1|}{p}\right]} \left\{ 1 + \sum_{m=1}^{\infty} \frac{(pz)^{2m}}{m!} (-1)^m e^{-m\frac{|z - z_1|}{p}} \right\} \times e^{-j(z - z_1)(k_1 - k\cos\theta)} dz dz_1.$$
(5)

Введем безразмерные величины

$$x = \frac{2}{L} \left(z - \frac{L}{2} \right); \ c = \frac{2\rho}{L}; \ \beta = \frac{L^3}{2}; \ \psi = \frac{L}{2} \left(k_0 - k \cos \theta \right); \ w_m = \frac{c}{m + c^2 \beta^2}.$$
(6)

С учетом (6) выражение (5) примет вид

$$\overline{|f(\psi)|^2} = \frac{L^2}{4} e^{\beta^2 c^2} \left[I_9(w_0, \psi, \psi) + \sum_{m=1}^{\infty} \frac{(\beta c)^{2m}}{m!} (-1)^m I_9(w_m, \psi, \psi) \right].$$
(7)

Здесь ингеграл

$$I_{\mathfrak{s}}(w,\psi,\psi) = \int_{-1}^{1} e^{-\frac{|x-x_{1}|}{w} - i\psi(x-x_{1})} dx dx_{1} =$$

$$= \frac{1}{\left(\frac{1}{w^{2}} + \psi^{2}\right)^{2}} \left\{ \frac{4}{w} \left(\frac{1}{w^{2}} + \psi^{2}\right) - 2\left(\frac{1}{w^{2}} - \psi^{2}\right) + 2e^{-\frac{2}{w}} \times \left[\left(\frac{1}{w^{3}} - \psi^{2}\right)\cos 2\psi - \frac{2\psi}{w}\sin 2\psi \right] \right\}.$$

$$\times \left[\left(\frac{1}{w^{3}} - \psi^{2}\right)\cos 2\psi - \frac{2\psi}{w}\sin 2\psi \right] \right\}.$$
(8)

Таблица значений этого интеграла приведена в приложении.

Выражение (7) справедливо для произвольных значений дисперсии и радиуса корреляции флуктуаций (ошибок) волнового числа. На рис. 1а, б, представлены результаты расчета на ЭВМ М-20 средних диаграмм направленности, определяемых выражением (7), для ряда значений величин c и β . Для сравнения на каждом из рисунков нанесена диаграмма направленности при отсутствии ошибок ($\beta = 0$), равная

$$f_0^2(\phi) = L^2 \frac{\sin^2 \phi}{\phi^2}.$$
 (9)

Все диаграммы выражены в децибеллах. На рис. 1, в показана величина средлей мощности, изучаемой в направлении $\psi = 0$. Из рис. 1 видно, что нелокальные фазовые ошибки приводят к тем же искажениям диаграммы направленности, что и локальные [1]. Однако зависимость этих искажений от радиуса корреляции качественно иная. Увеличение ρ приводит к увеличению искажений диаграммы, в то время как при локальных ошибках — к уменьшению искажений. Это объясняется тем, что увеличение ρ приводит в АБВ к увеличению дисперсии нелокальных фазовых ошибок (см. соотношение (4)), синфазные же системы приближаются в этом случае к системам в отсутствие ошибок.

Рассмотрим теперь два частных случая, для которых выражение (7) существенно упрощается.

а) Величина $\beta^2 c^2 = \rho^2 \sigma^2 \ll 1$. В этом случае, ограничиваясь в (7) лишь первым членом суммы, получим

$$\overline{|f(\psi)|^2} = \frac{L^2}{4} \left[(1 + \beta^2 c^2) I_9(w_0, \psi, \psi) - \beta^2 c^2 I_9(c, \psi, \psi) \right].$$
(10)

При
$$w_0 = \frac{1}{c\beta^2} \gg 1$$

 $I_s(w_0, \psi, \psi) \simeq \iint_{-1}^{1} \left[1 - \frac{|x - x_1|}{w_0} \right] e^{-j\psi(x - x_1)} dx dx_1 =$
 $= 4 \frac{\sin^2 \psi}{\psi^2} + \frac{4}{\psi^2 w_0} \left(1 + \cos 2\psi - \frac{\sin 2\psi}{\psi} \right)$ (11)

и выражение (10) можно привести к виду

$$\overline{|f(\psi)|^2} = f_0^2(\psi) + c^2 \beta^2 L^2 \left[\frac{2\psi \cos^2 \psi - \sin 2\psi}{c\psi^3} + \frac{\sin^2 \psi}{\psi^2} - \frac{1}{4} I_s(c, \psi, \psi) \right].$$
(12)

Если $c \ll 1$, то $I_{\phi}(c, \psi, \psi) \simeq 4c$ и, с точностью до членов порядка c,

$$\overline{|f(\psi)|^2} = f_0^2(\psi) + c\beta^2 L^2 \frac{2\psi\cos^2\psi - \sin 2\psi}{\psi^3}.$$
 (13)

Выражение (13) было получено ранее в [2], где отмечено также, что второе слагаемое, характеризующее рассеянную мощность $f_p^2(\psi)$, пропоринонально L^3 , в то время как первое слагаемое, представляющее собой «невозмущенную» диаграмму направленности, пропорционально L^2 .

Весьма часто системы бегущей волны конструируются так, чтобы при $\theta = 0$ $\psi = \frac{\pi}{2}$. Это условие соответствует максимуму к. н. д. системы. Так как $f_p(\frac{\pi}{2}) = 0$, то для оптимально сконструированной антенны наличие ошибок волнового числа в первом приближении не сказывается на величине мощности, излучаемой в главном направлении.

б). Радиус корреляции волнового числа $\rho \to \infty$. Случай $\rho \to \infty$ соответствует такой ситуации, когда можно считать k_1 не зависимым от координаты z. Волновое число k_1 постоянно для данной антенны (данной реализации) и при переходе от одной реализации к другой меняется случайным образом.

Асимптотическое выражение для средней диаграммы направленности в этом случае можно получить, если в соотношении (4) использовать

разложение $e^{-\frac{|z-z_1|}{\rho}}$ в ряд. Можно получить искомое выражение еще проще. Полагая $k_1 = k_0 + \Delta$, из (2) находим

$$\overline{|f(\theta)|^2} = \iint_0^L e^{-i(z-z_1)(k_0-k\cos\theta)} e^{-j\Delta(z-z_1)} dz dz_1.$$
(14)

Рис. 2

Переходя к безразмерным координатам и считая величину Δ распределенной нормально с нулевым средним, получим

$$\overline{|f(\psi)|^2} = \frac{L^2}{4} I_F(Q, \psi, \psi).$$
(15)

В выражении (15) $Q = \frac{\sqrt{2}}{3}$, функция $I_r(Q, \psi, \psi) = \int_{-1}^{1} \int_{0}^{1} e^{-\frac{(x-x_1)^2}{Q^2} - j\psi(x-x_1)} dx dx_1$

вычислена и протабулирована в [1]. Там же приведены асимптотические выражения этой функции, позволяющие определить значение $|\overline{f(\psi)}|^2$ при $\beta \gg 1$ и $\beta \ll 1$.

График I_г (Q, ψ , ψ) для различных значений величины Q приведен на рис. 2. При немалых ошибках величина Q мала, и средняя диаграмма направленности почти полностью «размазывается».

3. Рассмотрим ширину средней диаграммы направленности. для двух частных случаев. Методика исследования аналогична использованной в [1].

а) $z^2 z^2 \ll 1$, $w_0 \gg 1$. Используя соотношение (12), имеем при $p^2 z^2 \ll 1$ следующее выражение для нормированной средней диаграммы направленности:

$$\overline{|F(\psi)|^2} = \frac{|f(\psi)|^2}{|f(0)|^2} = F_0^2(\psi) [1 - \beta^2 c^2 v(c, 0)] + \beta^2 c^2 v(c, \psi)].$$
(16)

.....

Здесь

$$F_0^2(\psi) = \frac{\sin^2 \psi}{\psi^2};$$

$$v(c, \psi) = \frac{2\psi \cos^2 \psi - \sin 2\psi}{c\psi^3} + F_0^2(\psi) - \frac{1}{4}I_s(c, \psi, \psi);$$

$$v(c, 0) = -\frac{2}{3c} + 1 - \frac{1}{4}I_s(c, 0, 0).$$

При написании (16) предполагалось, что условие $\psi = 0$ в системе реализуется. Считая далее $|F(\psi)|^2 = 0,5$ и используя разложение функции $|F(\psi)|^2$ в ряд Тейлора около точки $\psi_0 = 1,39$ (направление излучения половинной мощности в отсутствие ошибок), находим из (16)

 $\left\{F_{0}^{2}(\psi_{0})+\left[F_{0}^{2}(\psi_{0})\right]'\Delta\psi\right\}\left[1-\beta^{2}c^{2}v(c,\,0)\right]+\beta^{2}c^{2}v(c,\,\psi_{0})=0.5.$

Отсюда

$$\Delta \psi = 1,8 \left[v \left(c, \psi_0 \right) - 0,5 v \left(c, 0 \right) \right] \beta^2 c^2.$$
(17)

Входящая в соотношение (17) величина v (c, ψ₀)

$$v(c, \psi_0) = -\frac{0.1}{c} + 0.5 - \frac{1}{4} I_s(c, \psi_0, \psi_0),$$

поэтому выражение (17) можно переписать следующим образом:

$$\Delta \psi = 0,45 \left[\frac{0.9}{c} + \frac{1}{2} I_{\mathfrak{s}}(c, 0, 0) - I_{\mathfrak{s}}(c, \psi_{0}, \psi_{0}) \right] \beta^{2} c^{2}.$$
(18)

Если $k_0 = k$ или $\left| \frac{L}{2} (k_0 - k) \right| \ge 1,39$, то полное расширение диаграммы направленности определяется величиной $2\Delta\psi$.

На рис. З представлена рассчитанная по формуле (18) зависимость расширения диаграммы направленности от радиуса корреляции.

При $c \ll 1$ первые члены в асимптотических разложениях величин $I_9(c, 0, 0)$ и $I_9(c, \psi_0, \psi_0)$ имеют порядок c:

$$2\Delta\psi\simeq 0,8\beta^2c=0,4\rho L\sigma^2.$$

Таким образом, при уменьшении радиуса корреляции волнового числа величина 2∆ф → 0.

5
10)
I HHI
фуни
значений
Таблица

приложение

	10	158	200	170	134	Ш	094	074	057	042	036	028	024	022	020
			Ó	Ó	õ	°.	0	<u>б</u>	-0 	б 	ő	°	. oʻ	°	б —
Таблица значений функции / _s (с; ሱ ψ)	6	0,164	0,220	0,199	0,161	0,134	0,115	160'0	0,071	0,051	0,044	0,033	0,028	0,024	0,022
	8	0,169	0,241	0,235	0,196	0,166	0,144	0,117	0,095	0,078	0,073	0,068	0,065	0,064	0,063
	7	0,175	0,264	0,279	0,243	0,209	0,183	0,147	0,116	0,087	0,077	0,063	0,056	0,052	0,049
	9	0,180	0,287	0,334	0,305	0,270	0,240	0,196	0,155	0,111	0,094	0,070	0,056	0,048	0,042
	5	0,184	0,310	0,400	0,391	0,359	0,327	0,278	0,235	0,196	0,184	0,169	0,162	0,159	0,156
	4	0,188	0,332	0,477	0,505	0,488	0,459	0,399	0,334	0,263	0,238	0,204	0,184	0,170	0,160
	3	161'0	0,352	0,561	0,653	0,679	0,674	0,628	0,544	0,415	0,356	0,262	0,207	0,172	0,147
	5	0,193	0,367	0,640	0,820	0,934	1,003	1,071	1,094	1,070	1,047	000'1	0,968	0,946	0,929
	-	0,195	0,377	0,698	0,963	1,178	1,353	1,616	1,877	2,166	2,279	2,443	2,533	2,589	2,627
	0	0,195	0,380	0,720	1,020	1,282	1,509	1,876	2,271	2,747	2,943	3,242	3,409	3,516	3,591
	*/.	0,05	0,1	0,2	0,3	0,4	0,5	0,7	1	1,6	5	e	4	Q	9

Некоторые вопросы статистической теории...

9

б) $\rho \rightarrow \infty$. Средняя диаграмма направленности в этом случае опре-деляется выражением (15). Если в системе условие $\psi = 0$ реализуется, то нормированная диаграмма

$$\overline{|F(\psi)|^2} = \frac{I_r(Q, \psi, \psi)}{I_r(Q, 0, 0)}.$$
(19)

Полагая $|F(\psi)|^2 = 0,5$, получим уравнение для ширины средней диа-граммы направленности $2\psi_{cp}$. Результаты графического решения этого урав-нения представлены на рис. 4. Величина $2\psi_0 = 2,78$ дает ширину диа-граммы направленности в отсутствие ошибок. Если ошибки малы ($\beta \ll 1$), то $Q = \frac{\sqrt{2}}{\beta} \gg 1$. Используя асимптотические выражения для $I_r(Q, \psi, \psi)$ и $I_r(Q, 0, 0)$ в случае $Q \gg 1$ [1], находим

$$\overline{|F(\psi)|^2} = F_0^2(\psi) \left[1 + \frac{2}{3Q^2} \right] - \frac{1}{Q^2 \psi^4} \left[(3 - 2\psi^2) \cos 2\psi + 4\psi \sin 2\psi - 3 \right].$$
(20)

Дальнейший анализ аналогичен приведенному выше для соотноше-ния (16). Опуская соответствующие выкладки, приведем окончательное выражение для величины расширения средней диаграммы направленности

$$2\Delta\psi\simeq 0.72\beta^2.$$
 (21)

Соотношение (21) определяет предельное значение величины 24 в

соотношение (21) определяет предельное значение величины 2∆ф в случае малых ошибок при р → ∞. Как отмечено в работе [1], в случае локальных фазовых ошибок зависимость расширения средней диаграммы направленности от радиуса корреляции носит резонансный характер. Так как с увеличением р сис-тема приближается к синфазной, то при р → ∞ 2∆ψ → 0. Иное положение мы наблюдаем в случае нелокальных ошибок. С увеличением р фазовые ошибки увеличиваются. При этом растет и вели-

чина 2 $\Delta \psi$ (рис. 4). При $\rho \rightarrow \infty$ $2\Delta \psi \rightarrow 0.72\beta^2$.

ЛИТЕРАТУРА

1. Я. С. Шифрин. Статистика поля линейной антенны. АРТА, 1962.

2. В. И. Таланов, Н. М. Шеронова. О влиянии случайных ошибок в распределении источников на диаграммы направленности антени бегущей волны. «Изв. вузов, Радиофизика», 1959, т. II, № 3.