Я. С. ШИФРИН, д-р техн. наук, Л. Г. КОРНИЕНКО, канд. техн. наук

О ПРЕДЕЛЬНОМ УРОВНЕ БОКОВЫХ ЛЕПЕСТКОВ АНТЕННЫХ РЕШЕТОК СО СЛУЧАЙНЫМИ ФАЗОВЫМИ ОШИБКАМИ

Как известно, для снижения уровня бокового излучения антенн используется спадающее к краям амплитудное распределение (АР). Изменяя характер АР, можно уменышить боковые лепестки. Однако реально возможности снижения уровня боковых лепестков путем управления АР ограничиваются влиянием всегда имеющих место случайных ошибок в амплитудно-фазовом распределении. Эти ошибки создают «фон» бокового излучения, относительный уровень которого растет по мере отклонения амплитудного распределения от равномерного. Если номинальный уровень боковых лепестков (в отсутствие ошибок) становится соизмеримым с «фоном», то дальнейшие попытки уменьшить боковое излучение путем изменения АР не приводят к желаемым результатам. Таким образом, случайные ошибки ограничивают минимально возможный уровень бокового излучения антенны.

Вопрос о предельном уровне боковых лепестков рассматривался в работах [1, 2].

В работе [1] исследовано влияние случайных ошибок на *средний* уровень боковых лепестков. Полученные при этом результаты, естественно, непригодны для оценки бокового излучения отдельно взятой антенны из ансамбля однотипных антенн.

В работе [2] исследуется предельный уровень боковых лепестков дольф-чебышевской антенной решетки. Предельный уровень определен в результате рассмотрения вероятностных характеристик амплитуды поля в направлении максимума одного из боковых лепестков ДН. Подобный подход является шагом вперед по сравнению с использованным в работе [1]. Однако и он не дает ответа о дейсгвительном уровне боковых лепестков антенны.

При наличии ошибок ДН антенны является случайной функцией угловых координат. Поэтому при анализе уровня боковых лепестков надо изучать не вероятность того, что ДН (амплитуда поля $R(\psi)$) в каком-то одном направлении выйдет за фиксированный уровень (как это делается в работе [2]), а вероятность того, что вся ДН в определенном секторе $\psi_1 - \psi_2$ не выйдет за определенный уровень, характеризуемый заданной кривой $v(\psi)$.

Решение этой задачи сводится к нахождению функционала распределения случайной функции $R(\psi)$, которым, по определению, называется вероятность выполнения неравенства $R(\psi) \leq \langle v(\psi) \rangle$ в заданном секторе углов, т. е.

$$P_{R}\left[v\left(\psi\right)\right] = P\left[R\left(\psi\right) \leq v\left(\psi\right)\right], \ \psi \in \left[\psi_{1}, \psi_{2}\right]. \tag{1}$$

Подобный подход к исследованию проблемы боковых лепестков, сформулированный впервые в работе [3], положен в основу исследования предельного уровня бокового излучения, проведенного в данной работе.

Постановка задачи

Рассмотрим линейную эквидистантную решетку из 2N изотропных излучателей с фазовыми ошибками φ_n . Комплексный множитель решетки описывается соотношением

$$f(\psi) = \sum_{n=-N}^{N} a_n e^{j\psi n'} e^{j\varphi_n}, \qquad (2)$$

где
$$\psi = kd\sin\theta; \ k = \frac{2\pi}{\lambda}; \ n' = n - 0.5 \frac{n}{|n|};$$

76

d — пространственный период решетки;

 $a_n = \frac{A_n}{\sum A_n}$ — амплитудное распределение, нормированное так, что $|f_0(0)| = 1$.

Индекс «0» здесь и далее обозначает соответствующие величины в отсутствие ошибок. Заметим, что в отсутствие ошибок решетка предполагается синфазной.

Будем далее считать фазовые ошибки распределенными нормально со средним значением $\overline{\varphi}_n = 0$ и дисперсией $\overline{\varphi}_n^2 = \sigma_{n}^2$, определяемой механизмом происхождения ошибок. Ошибки в элементах решетки полагаем независимыми.

В соответствии со сказанным выше уровень боковых лепестков решетки характеризуется функционалом P_R , определяемым соотношением (1). Схема вычисления функционала изложена в работе [3]. Имея выражения для P_R , можно сформулировать две задачи: прямую и обратную.

Прямая задача состоит в вычислении P_R при заданном амплитудном распределении (номинальном уровне боковых лепестков) и заданной статистике ошибок. Примеры решения прямой задачи для равномерного амплитудного распределения приведены в [3].

Обратная задача может быть сформулирована по-разному, в зависимости от того, что мы хотим определить — уровень $v(\psi)$, амплитудное распределение a_n или статистику ошибок. Во всех случаях значение функционала P_R считается заданным.

При исследовании предельного уровня боковых лепестков наиболее естественной является следующая постановка задачи. Амплитудное распределение принимается дольф-чебышевским. Уровень $v(\psi) = \text{const} = v_c$. Такой выбор $v(\psi)$ представляется разумным, если учесть, что при дольф-чебышевском амплитудном распределении все боковые лепестки в отсутствие юшибок имеют одинаковый уровень $F_{6.n.}$

При выбранных AP и $v(\psi)$ обратная задача может быть сформулирована так. Значение функционала P_R заданс. Необходимо при известной статистике ошибок и принимаемом уровне номинальных боковых лепестков $F_{6.n}$. найти такое значение v_c , при котором значение функционала равно P_R . Уровень v_c будем называть далее статистическим уровнем боковых лепестков. Определяя величину v_c для различных значений $F_{6.n}$, получаем зависимость $v_c = v_c(F_{6.n})$, которая позволит определить предельно возможный уровень боковых лепестков.

Приступим к решению этой задачи.

Следуя методике работы [3], найдем выражение для функционала распределения ДН решетки при произвольном амплитудном распределении. Предварительно исследуем корреляционные свойства поля решетки.

Корреляционные свойства поля

Флюктуации комплексного поля описываются выражением

$$\Delta f(\psi) = f(\psi) - \overline{f(\psi)} = \sum_{n} a_n \cdot e^{j\phi n} \left[e^{j\phi n} - g_n(1) \right], \qquad (3)$$

где черта сверху обозначает операцию усреднения, $g_n(u) = \exp(ju \varphi_n)$ — одномерная характеристическая функция.

При малых нормально распределенных фазовых ошибках флюктуации поля также распределены нормально. Поэтому для исчерпывающего описания случайной функции $\Delta f(\psi)$ достаточно изучить корреляционную матрицу

$$K(\psi, \psi_1) = \begin{vmatrix} K_x(\psi, \psi_1) & K_{xy}(\psi, \psi_1) \\ K_{yx}(\psi, \psi_1) & K_y(\psi, \psi_1) \end{vmatrix}$$
(4)

где K_x , K_y — корреляционные функции действительной и мнимой частей $\Delta f(\psi)$ соответственно;

K_{xy}, K_{yx} — взаимные корреляционные функции. Если рассмотреть функции

$$K_1(\psi,\psi_1) = \overline{\Delta f(\psi)} \Delta f^*(\overline{\psi_1}) \ \text{и} \ K_2(\psi,\psi_1) = \overline{\Delta f(\psi)} \Delta f(\overline{\psi_1}), \tag{5}$$

то

$$K_{x,y} = 0.5 \operatorname{Re}(K_1 \pm K_2), \quad K_{xy(yx)} = 0.5 \operatorname{Im}(K_1 \pm K_1).$$

Следовательно, изучение корреляционной матрицы К сводится к изучению функций К₁ и К₂. Величина К₁ представляет собой корреляционную функцию флюктуаций комплексного поля.

При независимости флюктуащий фазы в излучателях решетки

$$K_{1,2}(\psi,\psi_1) = \sum_{n=-N}^{N} a_n^2 \gamma_n^{\pm} e^{In'(\psi \pm \psi_1)^2}, \qquad (6)$$

где

$$\gamma_n^+ = 1 - |g_n(1)|^2, \quad \gamma_n^- = g_n(2) - g_n^2(1),$$

Из соотношения (6) следует, что выражения для корреляционной функции комплексного поля K_1 и функции K_2 с независимыми ошибками имеют тот же вид, что и ДН решетки с амплитудным распределением $a_n^2 \gamma_n^{\pm}$ и аргументами ($\psi - \psi_1$) и ($\psi + \psi_1$) соответственно.

Этот вывод при $\gamma_n = \text{const}$ согласуется с теоремой Ван-Циттерта-Цернике для частично когерентного света [4].

Заметим, что сказанное выше остается справедливым при любом законе распределения и произвольной величине фазовых ошибок в случае независимости их в излучателях и большом числе последних. Тогда $K_{1,2}$ описываются соотношением (6),

а нормальный закон распределения $\Delta f(\psi)$ следует из центральной предельной теоремы.

На основании соотношения (6) можно сделать следующие выводы.

1. Для симметричных а_n и ү_n функции

$$K_{1,2}(\psi,\psi_1) = 2\sum_{n=1}^{N} a_n^2 \gamma_n^{\pm} \cos n' (\psi \mp \psi_1)$$
 (7)

являются действительными. Это означает, что взаимные корреляционные функции $K_{xy(yx)} = 0$ и

$$K_{x,y}(\psi,\psi_1) = 0.5 [K_1 \pm K_2].$$
 (8)

2. При ψ=ψ1

$$K_1(\psi,\psi) = 2\sum_n a_n^2 \gamma_n^+, \quad K_2(\psi,\psi) = 2\sum_n a_n^2 \gamma_n^- \cos 2n'\psi.$$

Если ф расположено вне главного лепестка ДН с достаточно низким уровнем боковых лепестков, то $|K_1(\psi, \psi)| \gg |K_2(\psi, \psi)|$ и дисперсии реальной и мнимой частей флюктуаций поля, согласно (8), примерно одинаковы:

$$K_{x,y}(\psi,\psi) = \sigma_{x,y}^2 = 0.5 \ K_1(\psi,\psi) = \sum_n a_n^2 \gamma_n^+$$
(9)

и не зависят от обобщенного угла у.

3. Поскольку интервал (в терминах ф) между максимумами соседних боковых лепестков имеет порядок полуширины (по нулям) главного лепестка ДН, флюктуации поля в соседних боковых лепестках можно считать некоррелированными, а так как флюктуации поля распределены нормально, то и независимыми.

4. При малых фазовых ошибках * в симметричных относительно $\psi = 0$ точках нормированные корреляционные функции

$$r_x(\psi, -\psi) = K_x(\psi, -\psi) \left[K_x(\psi, \psi) K_x(-\psi, -\psi) \right]^{-\frac{1}{2}} = -1,$$

$$r_y(\psi, -\psi) = 1,$$

т. е. флюктуации поля в точках ψ и — ψ связаны линейной зависимостью. Эта связь вытекает также из соотношения

$$\Delta f(\psi) = j \sum_{n} a_n e^{j\psi n'} \varphi_n = -\Delta f^*(-\psi). \tag{10}$$

Приведенные результаты позволяют перейти далее к расчету функционала распределения ДН (1).

* В этом случае $\gamma_n^{\pm} = \sigma_n^2$.

Чтобы определить приближенное значение функционала, следует рассчитать вероятность совместного осуществления ряда независимых событий, каждое из которых состоит в том, что $|f(\psi_{\kappa})| \leq v_{c}$. Значения ψ_{κ} целесообразно выбрать равными значениям ψ , соответствующим положению максимумов боковых

Рис. 1.

лепестков в отсутствие ошибок. Число событий равно числу боковых лепестков в заданном секторе $\psi_1 - \psi_2$.

Поскольку в симметричных точках при малых ошибках флюктуации поля жестко связаны между собой, найдем вначале вероятность того, что амплитуда поля в симметричных максимумах боковых лепестков одновременно не превышает заданный уровень v_c .

Случайная величина $f(\psi_{\kappa})$ представляет собой сумму вещественной неслучайной величины $f_0(\psi_{\kappa})$ и случайной комплексной величины $\Delta f(\psi_{\kappa})$. Требование, чтобы случайная величина $|f(\psi_{\kappa})|$ в точках $\pm k_{\kappa}$ одновременно не превышала v_c , определяет некоторую область G допустимых значений величины $\Delta f(\psi_{\kappa})$. Границы области G, построенные с учетом соотношения (10), показаны на рис. 1 (заштрихованная область). Вероятность того, что $|f(\psi_{\kappa})|$ попадет в эту область, будет

$$P_{k} = \frac{1}{2\pi\sigma_{x}\sigma_{y}} \iint_{G} \exp\left[-\frac{1}{2}\left(\frac{x^{2}}{\sigma_{x}^{2}} + \frac{y^{2}}{\sigma_{y}^{2}}\right)\right] dx \, dy =$$
$$= \frac{1}{\pi\sigma^{2}} \iint_{G} \exp\left(-\frac{x^{2} + y^{2}}{\sigma^{2}}\right) dx \, dy,$$

где

$$\sigma^2 = K_1(\psi, \psi) = 2 \sum_{n=1}^N a_n^2 \gamma_n^+ \qquad (11)$$

- дисперсия флюктуаций поля.

Для приближенного определения этой вероятности примем в качестве области интегрирования вместо G прямоугольник, в который «вписана» область G. Тогда

$$P_{k} = \Phi\left[\frac{\sqrt{v_{c}^{2} - f_{0}^{2}(\psi_{k})}}{\sigma}\right] \Phi\left[\frac{v_{c} - f_{0}(\psi_{k})}{\sigma}\right], \qquad (12)$$

где $\Phi(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} dt$ — интеграл вероятности, подробные таб-

лицы которого приведены в [5]. Так как для дольф-чебышевского $\operatorname{APf}_{o}(\psi_{\kappa}) = F_{6.n}$, то величина P_{κ} для любой симметричной пары боковых лепестков одинакова.

Если М — число пар боковых лепестков, входящих в заданный сектор углов, то функционал распределения ДН

$$P_R[v_c] = \prod_{k=1}^{M} P_k = (P_1)^M.$$
(13)

Если в заданный сектор $\psi_1 - \psi_2$ входит M пар боковых лепестков и еще m боковых лепестков, то

$$P_{R} = \prod_{k=1}^{M} P_{k} \prod_{i=1}^{m} P_{0i}, \qquad (13a)$$

где P_{0i} — вероятность того, что в *i*-м боковом лепестке амплитуда поля не превысит значения v_c .

Для определения этой вероятности нужно знать закон распределения амплитуды поля в максимуме боковых лепестков. Поскольку $f(\psi_i) = f_0(\psi_i) + X(\psi_i) + jY(\psi_i)$ и X, Y—независимые нормально распределенные случайные величины, то $|f(\psi_i)|$ распределено по обобщенному закону Релея. Значит,

$$P_{0l} = \int_{0}^{c} \frac{2x}{\sigma^{2}} \exp\left[-\frac{f_{0}^{2}(\psi_{l}) + x^{2}}{\sigma^{2}}\right] I_{0} \left[\frac{2f_{0}(\psi_{l}) x}{\sigma^{2}}\right] dx = 1 - Q(y, A_{l}),$$
(14)

где $Q(y, A) = \int_{y}^{\infty} t \exp \left[-\frac{A^2 + t^2}{2} \right] I_0 (At) dt -$ табулированная

в [6] функция;
$$y = \frac{\sqrt{2} v_c}{\sigma}; A = \frac{\sqrt{2} f_0(\psi)}{\sigma}.$$

Вероятность P_{oi} , так же, как и P_{κ} , для дольф-чебышевского АР не зависит от номера бокового лепестка. Поэтому окончательное выражение для функционала (13а) имеет вид

$$P_R = (P_1)^M (P_{0i})^m.$$
(15)

Статистический уровень боковых лепестков

Сектор углов, в пределах которого нас интересует статистический уровень боковых лепестков, считаем симметричным, состоящим из *M* пар боковых лепестков.

6 306

81

Тогда

$$\Phi\left\{\sqrt{\left(\frac{v_c}{\sigma}\right)^2 - \left(\frac{F_{6.n}}{\sigma}\right)^2}\right\} \Phi\left\{\frac{v_c}{\sigma} - \frac{E_{6.n}}{\sigma}\right\} \frac{M}{V} \overline{P_R}.$$
 (16)

Полагая дисперсию фазовых ошибок равномерной $\sigma_n^2 = \sigma_n^2$ из соотношения (11), получаем

$$\sigma^{2} = 2\sigma_{0}^{2} \sum_{n=1}^{N} a_{n}^{2} = \sigma_{0}^{2} \frac{\sum_{n=1}^{N} A_{n}^{2}}{2(\sum_{n} A_{n})^{2}}$$
(17)

в выражении (17) определяет чувст- σ_0^2 Сомножитель при вительность антенны к случайным ошибкам [7].

Задаваясь значениями

Рис. 2.

 $F_{6.n}$ (или A_n [8]) и σ_0^2 , по формуле (17) найдем σ^2 , а затем из (16) величину v. На рис. 2, а приведены результаты расчета v, как функции F_{6.1} для решетки ИЗ 2N=8 излучателей с фазовыми ошибками σ₀=0,25. Кривые 1, 2 рассчитаны при P_R = 0,99, кривые 3, 4 — при P_R=0,5. Для кривых 2, 4 величина M = 1, для кривых 1, 3 M=3, т. е. сектор углов охватывает все боковые лепестки ДН. Числа, приведенные справа кривых указывают величину статистического уровня боковых лепестков при биноминальном амплитудном распределении, для ко-TOPORO $F_{\delta,\eta}=0.$

> Из рис. 2 видно, что с уменьноминального уровня шением боковых лепестков статистический уровень медленно уменьша-

ется и достигает предельного значения v_{np} . Так, при $P_R = 0.5$ и M=3 v_{пр} ≈-19 дБ. Это означает, что для 50% антенн ансамбля уровень боковых лепестков при со =0,25 меньше --19 дБ получить не удается. Предельное значение достигается при F_{6.д.} =-35 дБ.

В области v_{пр} статистический уровень изменяется незначительно. Поэтому целесообразно «остановиться» в начале этой области, поскольку с уменьшением Гол. увеличивается снижение КНД. Это видно из рис. 2, на котором приведены графики зависимости D/D_{op} (кривая 2) и D_o/D_{op} (кривая 1) от

*F*_{6.л}; *D*, *D*₀ — средний КНД и КНД в отсутствие ошибок; *D*_{ор} — КНД в отсутствие ошибок при равномерном амплитудном распределении. Рис. 2 позволяет подойти к выбору целесообразного значения для *F*_{Б.Л.}

Возвратимся к рис. 2. Статистический уровень боковых лепестков, найденный при M = 1 и 3, заметно отличается.

Очевидно эти отличия будут расти с увеличением числа боковых лепестков в ДН антенны. Поэтому по данным расчета v_i для одной пары боковых лепестков или тем более для одного бокового лепестка нельзя судить о действительном уровне бокового излучения антенны, который находим на основании функционала распределения ДН, как это сделано выше.

Рис. 2 показывает далее, что в области предельного уровня боковых лепестков и правее ее $F_{6,n} \ll v_c$. При этом вместо соотношения (16) имеем значительно более простое соотношение

$$\Phi\left(\frac{v_{\rm np}}{\sigma}\right) = \sqrt[2M]{P_R},\tag{18}$$

где среднеквадратичное значение флюктуаций поля о определяется выражением (17).

Из (18) имеем

$$v_{np} = c\sigma = c\sigma_0 \frac{\left[\sum_n A_n^2\right]^{\frac{1}{2}}}{\sqrt{2}\sum_n A_n}.$$
 (19)

Здесь с — величина, полученная из таблиц [5] для интеграла вероятности Ф при заданном значении $\sqrt[2M]{P_R}$. Соотношение (19) показывает, что предельный уровень боковых лепестков v_{np} определяется чувствительностью антенны к случайным ошибкам. Последняя, в свою очередь, определяется $F_{6.n}$, т. е. амплитудным распределением в системе.

При $M \gg 1$ и немалом P_R величина $\sqrt[2M]{P_R} \approx 1$, при этом $c \gg 1$. Следовательно, предельный уровень боковых лепестков заметно больше величины флюктуаций поля σ и пропорционален среднеквадратическому значению фазовых ошибок σ_0 .

Итак, в настоящей работе исследовался предельный уровень боковых лепестков для дольф-чебышевского АР. Очевидно, что подобное исследование может быть проведено и для других типов АР, например, для АР типа «косинус на пьедестале» [9], позволяющего получить номинальный уровень боковых лепестков до 40 дБ.

ЛИТЕРАТУРА

 Калинин З. А., Минкович Б. И. О точности воспроизведения амплитудных распределений у антенн СВЧ.— «Труды ХВАИВУ». Вып. 237. Харьков, 1961, с. ¹19—25.

83

- 2. Лейко Н. С., Маяцкий В. И. О статистических свойствах диаграммы направленности и выборе номинальных параметров дольф-чебышевских решеток.— Сб. «Антенны». Вып. 12. М., 1971, с. 3—12.
- 3. Шифрин Я. С. Корреляционные характеристики поля личейной антенны.— «Радиотехника и электроника», 1961, т. VI, № 101, с. 1846.
- 4. Борн М., Вольф Э. Основы оптики. М., «Наука», 1970, с. 551-557.
- Сегал Б. И., Семендяев К. А. Пятизначные математические таблицы. М., Физматгиз, 1959, с. 249—351,
- 6. Таблицы распределения Релея-Райса. М., ВЦ АН СССР, 1964. 248 с. Авт.: Л. С. Барк, Л. Н. Большев, Л. Н. Кузнецов и др.
- Gilbert E., Morgan S. Optimum design of directive antenna arrays subject to random variations. — «Bell. Syst. Techn. J.». 1955, v. 84, No 3, p. 637—663,
- Кириллов Л. Г. Таблицы коэффициентов возбуждения (токов) и определение некоторых параметров дольф-чебышевских решеток. — Сб. «Антенны». Вып. 3. М., 1968, с. 49—61.
- 9. Эллиот Р. М. Общая теория антенных решеток. Сб. «Сканирующие антенные системы СВЧ», Т. 11. М., 1969, с. 9—100.