УДК 621.372.

А. А. Шадрин, А. Г. Шеин, канд. физ.мат. наук

МОДИФИКАЦИЯ «СВЕРХБЫСТРОВОГО» Алгоритма решения уравнения пуассона для трехмерных областей взаимодействия электронных приборов. Ч. 1.

Предложенный Хокни численный метод «сверхбыстрого» решения уравнения Пуассона [1] хорошо зарекомендовал себя при моделировании на ЭЦВМ ряда двумерных задач физики плазмы и электроники приборов СВЧ [2—4].

Быстрота и экономичность метода, а также довольно высокая точность получаемого решения делают целесообразным разработку аналогичного алгоритма для трехмерной геометрии, необходимость рассмотрения которой очевидна. Достаточно сказать, что кроме информации о боковой расфокусировке и краевых эффектах, получаемой в дополнение к двумерной модели, трехмерная теория позволяет рассмотреть также широкий класс приборов с аксиально-азимутальным и поперечно-продольным взаимодействием (магнетронные линзы, приборы *E*- и *MJ*-типов, мазеры циклотронного резонанса и др.), где сведение задачи к плоскому случаю не всегда возможно.

В данной статье приводится алгоритм нахождения полей пространственного заряда в трехмерных областях, ограниченных плоскими или коаксиальными цилиндрическими поверхностями, при различных практически осуществимых распределениях потенциала на этих границах.

Этот алгоритм можно считать развитием алгоритма, приведенного в работе [5], поэтому для удобства сравнения по возможности сохраним принятые там обозначения.

Прямоугольная геометрия пространства взаимодействия

Постановка задачи. Ищется решение U(x, y, z) уравнения Пуассона

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} = f(x, y, z)$$
(1)

в прямоугольной трехмерной области [O, L; O, H; O, W] (рис.), удовлетворяющее граничным условиям (ГУ), которые допускают разложение в ряды по ортогональным периодическим функциям в двух направлениях.

В направлении дрейфа электронного потока обычно применяются периодические ГУ:

$$U(x, y, z) = U(x \pm L, y, z),$$
 (2)

где *L* — длина волны основной гармоники возмущения или период системы.

Если пространство взаимодействия ограничено с боков металлическими стенками, то в этом направлении применяются нулевые ГУ:

U(x, y, 0) = U(x, y, W) = 0 (3)

(₩ — ширина системы).

Практически любое заданное распределение потенциала на н электродах исследуебоковых мой модели может быть сведено к условию (3) введением определенной вспомогательной функобращающей граничный ции. потенциал в нуль. При этом неоднородость граничных условий фигурирует в виде известной добавки к функции распределе-

Изображение трехмерной сетки, на которой решается уравнение Пуассона.

ния зарядов $\tilde{f}(x, y, z)$ в правой части уравнения (1). После получения решения истинное значение потенциала восстанавливается вычитанием вспомогательной функции.

Иногда в сочетании с условием (3) может быть применено условие симметрии

$$U(x, y, z) = U(x, y, W-z),$$
 (4)

которое позволяет вдвое сократить количество операций и объем оперативной памяти.

В этом направлении может быть применено и периодическое ГУ:

$$U(x, y, z) = U(x, y, z \pm W),$$
 (5)

что имеет место, например, в приборах с широким пучком или со множеством пучков, заполняющих всю ширину системы, которая может иметь к тому же двумерную замедляющую структуру.

На верхней и нижней плоскостях («аноде» и «катоде») обычно задаются соответствующие потенциалы:

$$U(x, H, z) = U_a(x, z);$$
 (6)

$$U(x, 0, z) = U_c(x, z).$$
 (7)

Разобъем все пространство взаимодействия (см. рис.) на элементарные ячейки-параллелепипеды и преобразуем уравнение (1) в систему разностных уравнений, связывающих потенциалы и заряды в ячейках

$$\alpha^{2} \left(U_{i+1,k,l} + U_{i-1,k,l} \right) + \left(U_{i,k+1,l} + U_{i,k-1,l} \right) + \beta^{2} \left(U_{i,k,l+1} + U_{i,k,l-1} \right) - 2 \left(1 + \alpha^{2} + \beta^{2} \right) U_{i,k,l} = f_{i,k,l}^{(0)}, \quad (8)$$

где *i*, *k*, *l* — цел очисленные индексы узлов «арматуры», или соответствующих им элементарных ячеек-параллелепипедов со сторонами Δx , Δy , Δz ;

$$\Delta x = \frac{L}{N}; \ \Delta y = \frac{H}{M}; \ \Delta z = \frac{W}{V}; \ \alpha = \frac{\Delta y}{\Delta x}; \ \beta = \frac{\Delta y}{\Delta z};$$
(9)

 $f_{i, k, l}^{(0)} = (\Delta y)^2 f_{i, k}$. с точностью до постоянного множителя — заряд внутри ячейки;

$$i = 0, 1, \dots, N-1; k = 1, 2, \dots, M-1;$$

$$l = \begin{cases} 1, 2, \dots, V-1 - для \ \Gamma Y \ (3); \\ 1, 2, \dots, V/2 - для \ \Gamma Y \ (3) \ \text{совместно с (4)}; \\ 0, 1, \dots, V-1 - для \ \Gamma Y \ (5). \end{cases}$$

Граничные условия (2)—(7) дают соответствующие дополнительные равенства:

$$U_{i, k, l} = U_{l \pm N, k, l}; \tag{10}$$

$$U_{i, k} = -U_{i, k, -l}, \quad U_{i, k, V-l} = -U_{i, k, V+l}, \quad (11)$$

причем

$$U_{i, k, 0} = U_{i, k, V} = 0;$$

$$U_{i, k, l} = U_{i, k, V-l};$$
(12)

$$U_{i, k, l} = U_{i, k, l \pm V};$$
(13)

$$U_{i, M, l} = U_{a_{l-l}}; \tag{14}$$

$$U_{l, 0, l} = U_{c_{l, l}}$$
(15)

Значения $f_{l,k,l}^{(0)}$ при необходимости также могут быть продолжены за пределы действия индексов *i* и *l* по аналогии с условиями (10) — (13).

Применяемый метод требует, чтобы числа *M*, *N*, *V*, выражающие количество дискретных разбиений по каждому направлению, разлагались на простые, желательно малые, целые множители. Удобнее всего выбрать их кратными целым степеням 2. Поэтому возьмем

$$N = q2^{T}, \quad M = p2^{K} \text{ is } V = \rho 2^{E}, \tag{16}$$

где p, q, p — простые, а T, K и E — целые числа.

Алгоритм решения

а) Исключение нечетных ярусов приводит к следующей системе уравнений, связывающих значения $U_{i,k,l}$ только на четных «этажах» «арматуры» (k = 2, 4, ..., M - 2):

$$U_{i, k+2, l} + U_{i, k-2, l} - \alpha^{4} (U_{i+2, k, l} + U_{i-2, k, l}) - \beta^{4} (U_{i, k, l+2} + U_{i, k, l-2}) + 4 (1 + \alpha^{2} + \beta^{2}) [\alpha^{2} (U_{i+1, k, l} + U_{i-1, k, l}) + \beta^{2} (U_{i, k, l+1} + U_{i, k, l-1})] - 2\alpha^{2}\beta^{2} (U_{i+1, k, l+1} + U_{i-1, k, l+1} + (17)) + U_{i+1, k, l-1} + U_{i-1, k, l-1}) - 2 (1 + \alpha^{2} + \beta^{2}) (1 + 3\alpha^{2} + 3\beta^{2}) U_{i, k, l} = \beta^{(1)}_{l, k, l}$$

При этом для всех четных ярусов, за исключением граничных, вычисляется трехмерный массив

$$f_{l,k,l}^{(1)} = 2 \left(1 + \alpha^2 + \beta^2\right) f_{l,k,l}^{(0)} - \alpha^2 \left(f_{l+1,k,l}^{(0)} + f_{l-1,k,l}^{(0)}\right) - \beta^2 \times \left(f_{l,k,l+1}^{(0)} + f_{l,k,l-1}^{(0)}\right) + f_{l,k+1,l}^{(0)} + f_{l,k-1,l}^{(0)},$$
(18)

который записывается на месте массива $f_{i, k, l}^{(0)}$.

6) Двумерный Фурье-анализ на четных ярусах преобразует систему (17) в ряд независимых подсистем, каждая из которых связывает одноименные коэффициенты Фурье потенциалов и распределения зарядов на всех четных ярусах и имеет вид:

$$V_{j, k+2, m}^{\{cc\}} - \lambda_{j, m}^{(1)} V_{j, k, m}^{\{cc\}} + V_{j, k-2, m}^{\{cc\}} = \Phi_{j, k, m}^{(1)},$$
(19)

где

$$\lambda_{j,m}^{(1)} = 4 \left[\alpha^2 \left(1 + \cos \frac{2\pi j}{N} \right) + \beta^2 \left(1 + \cos \frac{\delta \pi m}{V} \right) + 1 \right]^2 - 2; \quad (20)$$

$$\delta = \int_{-\infty}^{1} d \pi g \text{ условий (11) совместно с (12),}$$

2 для условий (13),

ј, *m* — номера гармоник Фурье по направлениям *x* и *г* соответственно:

$$V_{j, k, m}^{\{cc\}}$$
, $\Phi_{j, k, m}^{(1)}$ - косинус-косинус $(V_{j, m}^{c, o} \cup \Phi_{j, m}^{(1)^{c, o}})$,

косинус-синус ($V_{j,m}^{s,c}$ и $\Phi_{j,m}^{(1)^{c,s}}$), синус-косинус ($V_{j,m}^{s,c}$ и $\Phi_{j,m}^{sc}$) и синус-синус ($V_{j,m}^{s,c}$ и $\Phi_{j,m}^{(1)^{ss}}$) — коэффициенты Фурье потенциала и распределения зарядов;

$$V_{i,m}^{cs} = \frac{4}{NV} \sum_{i=1}^{N-1} \sum_{l=1}^{V-1} U_{l,l} \sin \frac{2\pi i l}{N} \sin \frac{2\pi l m}{V}$$
(21)

99

$$(j = 1, 2, ..., N/2 - 1; m = 1, 2, ..., V/2 - 1);$$

$$V_{i,m}^{ss} = \frac{4}{NV} \sum_{i=0}^{N-1} \sum_{i=1}^{V-1} U_{i,i} \cos \frac{2\pi i j}{N} \sin \frac{2\pi l m}{V}$$
(21a)

7*

$$(j = 0, 1, ..., N/2; m = 1, 2, ..., V/2 - 1);$$

$$V_{j,m}^{sc} = \frac{4}{NV} \sum_{l=1}^{N-1} \sum_{l=0}^{V-1} U_{l,l} \sin \frac{2\pi l j}{N} \cos \frac{2\pi l m}{V} \qquad (216)$$

$$(j = 1, 2, ..., N/2 - 1; m = 0, 1, ..., V/2);$$

$$V_{l,m}^{co} = \frac{4}{NV} \sum_{l=0}^{N-1} \sum_{l=0}^{V-1} U_{l,l} \cos \frac{2\pi l j}{N} \cos \frac{2\pi l m}{V} \qquad (21B)$$

$$(j = 0, 1, ..., N/2; m = 0, 1, ..., V/2).$$

$$\mathcal{I}_{J,M} \text{ нулевых } \Gamma Y V_{l,m}^{\left\{c\}} \equiv 0;$$

$$V_{j,m}^{c,s} = \frac{4}{NV} \sum_{l=0}^{N-1} \sum_{l=1}^{V-1} U_{l,l} \cos \frac{2\pi l j}{N} \sin \frac{\pi l m}{V} \qquad (22)$$

$$(j = 0, 1, ..., N/2; m = 1, 2, ..., V - 1);$$

$$V_{I,m}^{ss} = \frac{4}{NV} \sum_{i=0}^{N-1} \sum_{l=1}^{V-1} U_{i,l} \sin \frac{2\pi i J}{N} \sin \frac{\pi l m}{V}$$
(22a)

$$(j = 1, 2, ..., N/2 - 1; m = 1, 2, ..., V - 1),$$

что с использованием соотношения

$$\sin\frac{\pi m \left(V-l\right)}{V} = (-1)^{m+1} \sin\frac{\pi m l}{V}$$

преобразуется для нечетных т к виду

$$V_{l,m}^{\{c\},s} = \frac{4}{NV} \sum_{l=\{0\}}^{N-1} \left\{ \frac{\cos\left(\frac{2\pi l j}{N}\right)}{\sin\left(\frac{m-1}{N}\right)} \right\} \left[(-1)^{\frac{m-1}{2}} U_{l,v/2} + \sum_{l=1}^{V/2-1} \left(U_{l,l} + U_{l,v-l} \right) \sin\left(\frac{\pi l m}{V}\right) \right]$$
(23)
(m = 1, 3, ..., V - 1),

а для четных m — к виду

$$V_{j,m}^{\{c\},s} = \frac{4}{NV} \sum_{\iota=\{0\}}^{N-1} \sum_{l=1}^{V/2-1} \left\{ \cos\left(\frac{2\pi j}{N}\right) \right\} (U_{i,l} - U_{i,v-l}) \sin\frac{\pi lm}{V} \quad (m = 2, 4, \dots, V-2).$$
(23a)

При выполнении условия симметрии (12) последнее выражение тождественно равно 0, и операция преобразования осуществляется только для нечетных *m по* формуле (23а). Аналогичным образом Фурье анализ проводится для распределения зарядов

$$f_{l,l}^{(1)} \rightarrow \Phi_{l,m}^{(1)} \xrightarrow{\{cc\}}$$
(24)

и для граничных потенциалов

$$U_{a_{i,l}} \rightarrow V_{a_{j,m}}^{\{cc\}};$$

$$U_{c_{i,l}} \rightarrow V_{a_{j,m}}^{\{cc\}}.$$
(25)

Необходимо отметить, что в случае нулевых граничных условий (11) ряд синус-коэффициентов по z получается вдвое длиннее, чем при условии периодичности (13). Поэтому представляется целесообразным пренебречь высшими гармониками, начиная с m = V/2, что позволит вдвое сократить число преобразований при определенной точности вычислений, которая гарантируется условием малости амплитуд высших гармоник.

Программа для ЭЦВМ должна предусматривать выполнение операций (24) и (25), осуществляемых по одному из известных алгоритмов быстрого преобразования Фурье (БПФ) [6, 8], а также вычисление $\lambda_{jm}^{(1)}$ по формуле (20) с учетом особенностей, обусловливаемых граничными условиями.

в) Циклическая редукция проводится со всеми имеющимися Фурье-коэффициентами и заключается в последовательном исключении промежуточных горизонтальных ярусов, что приводит к решению подсистемы с минимальным числом уравнений с последующим восстановлением по найденному решению промежуточных значений потенциала [1, 5].

На втором шаге прямого хода циклической редукции (r = 2, 3,..., k) вычисляем

$$\lambda^{(r)} = (\lambda^{(r-1)})^2 - 2 \tag{26}$$

и для

$$k = 2', 2 \cdot 2', \ldots, (M-2)';$$

$$\Phi_k^{(r)} = \Phi_{k+2^{r-1}}^{(r-1)} + \lambda^{(r-1)} \Phi_k^{(r-1)} + \Phi_{k-2^{r-1}}$$
(27)

(индексы гармоник *j*, *m*, *c*, *s* опущены).

После *R*-редукции остается (*p*-1) уравнений

$$V_{k+\frac{M}{p}} - \lambda^{(k)} V_k + V_{k-\frac{M}{p}} = \Phi_k^{(k)}$$

$$\left(k = \frac{M}{p}, \frac{2M}{p}, \dots, M - \frac{M}{p}\right),$$
(28)

из которых, используя вычисленные ранее значения гармоник граничных потенциалов, находим соответствующие значения V k, а затем на обратном ходе редукции — остальные коэффициенты на всех ярусах:

$$V_{k} = (V_{k+2r} + V_{k-2r} - \Phi^{(r)})/(\lambda^{(r)})$$

$$(r = R - 1, R - 2, ..., 1; k = 2r, 2r + 2r + 1, 2r + 2 \cdot 2r + 1, ..., M - 2r).$$

$$(29)$$

Для p = 2 обратный ход начинается с вычисления

$$V_{M/2} = \frac{V_a + V_c - \Phi_{M/2}}{\lambda^{(k)}}.$$
 (30)

г) Одномерный Фурье-синтез на четных ярусах осуществляется в направлении z (по индексу m) над найденными значениями гармоник потенциала $V_{j,k,m}^{\{\infty\}}$. Для периодических ГУ (13) это преобразование имеет вид:

$$\overline{V}_{l,\ l}^{[c]} = \frac{1}{2} \left[V_{l,\ 0}^{[c],\ c} + (-1)^{l} V^{[c],\ c} + \sum_{m=1}^{V/2-1} \left(V_{l,\ m}^{[c],\ c} \cos\left(\frac{2\pi lm}{V}\right) + V_{l,\ m}^{[c],\ s} \sin\left(\frac{2\pi lm}{V}\right) \right) \right],$$
(31)

а для нулевых ГУ (11)

$$\overline{V}_{l,l}^{\binom{c}{s}} = \sum_{m=1}^{V-1} V_{l,m}^{\binom{c}{s},s} \sin \frac{\pi l m}{V}, \qquad (32)$$

или для четных *l*

$$\overline{V}_{j,l}^{\{c\}} = \sum_{m=1}^{V/2-1} \left[V_{j,m}^{\{c\},s} + (-1)^{l/2} V_{j,m}^{\{c\},s} \right] \sin \frac{\pi l m}{V},$$
(33)

а для нечетных

$$\overline{V}_{j,l}^{\{c\}} = (-1)^{l-1/2} V_{j,\mathbf{q}V/2}^{\{c\},s} + \sum_{m=1}^{V/2-1} \left(V_{j,m}^{\{c\},s} \sin \frac{\pi lm}{V} + (-1)^{l-1/2} \cos \frac{\pi lm}{V} \right).$$
(33a)

Злесь

 $\mathbf{j} = \begin{cases} 0, \ 1, \ \dots, \ N/2 \ для \ V_{I.\ I}^{c}; \\ 1, \ 2, \ \dots, \ N/2 \ -1 \ для \ V_{I.\ I}^{s}, \end{cases}$

а индекс k = 0, 2, ..., M опущен.

При выполнении условия симметрии (12) суммирование в (32) или (33) проводится только-по нечетным т.

д) Одномерный Фурье-анализ на нечетных ярусах осуществляется в продольном направлении x (по индексу i), в результате чего исходная система (8) преобразуется к виду

$$\overline{V}_{j,k,l+1}^{\binom{c}{s}} - \mu_{j}^{(0)} \overline{V}_{j,k,l}^{\binom{c}{s}} + \overline{V}_{j,k,l-1}^{\binom{c}{s}} = Q_{j,k,l}^{(0)}, \qquad (34)$$

где

$$\mu^{(0)} = \frac{1 + \beta^2 + \alpha^2 \left(1 - \cos\frac{2\pi i}{N}\right)}{\beta^2};$$
(35)

$$Q_{j,k,l}^{(0)} = \left(\overline{\Phi}_{j,k,l}^{(0)} - \overline{V}_{j,k+1,l}^{(c)} - \overline{V}_{j,k-1,l}^{(c)} \right)^{c} \beta^{2};$$
(36)

 $\overline{V}_{j, k\pm 1, l}^{\{c\}}$ — известные значения гармоник потенциала на четных ярусах;

 $\overline{\Phi}_{l,k,l}^{(0)} =$ прямое преобразование Фурье распределения потенциала $f_{l,k,l}^{(0)}$ на нечетных ярусах;

На этом этапе по всем *j*, *l* и по $k = 1, 3, 5, \ldots, M - 1$ проводится вычисление (37) по алгоритму одномерного БПФ и определяются значения (35) и (36).

е) Циклическая редукция на нечетных ярусах осуществляется в z-направлении (по индексу l) для всех j и k = 1, 3, 5, ..., M-1.

После є-й редукции (є = 1, 2, ..., T) получаем систему $V/2^{\varepsilon}$ уравнений (индексы k, j, c, s опускаем):

$$\overline{V}_{l+2} \epsilon - \mu^{(\epsilon)} \overline{V}_l + \overline{V}_{l-2} \epsilon = Q_l^{(\epsilon)}.$$
(38)

При этом на каждом є-шаге вычисляются

$$\mu^{(\epsilon)} = (\mu^{(\epsilon-1)})^2 - 2 \tag{39}$$

И

$$Q_{i}^{(\epsilon)} = Q_{i+2(\epsilon-1)}^{(\epsilon-1)} + \mu^{(\epsilon-1)}Q_{i}^{(\epsilon-1)} + Q_{i-2\epsilon-1}^{(\epsilon-1)}$$
(40)

с учетом ГУ типа (11) — (13), которые распространяются также на $Q_l^{(\epsilon)}$ и \overline{V}_l ($l = 0, 2^{\epsilon}, 2.2^{\epsilon}, \ldots, V - 2^{\epsilon}$), причем для нулевых условий типа (11) l = 0 исключается, так как $Q_0^{(\epsilon)} = \overline{V}_0 = 0$, а если выполняется еще и условие симметрии, то

$$l=2^{\varepsilon}, 2\cdot 2^{\varepsilon}, \ldots, V/2$$

И

$$Q_{V/2}^{(\epsilon)} = 2Q_{V/2-2^{\epsilon-1}}^{(\epsilon-1)} + \mu^{(\epsilon-1)}Q_{V/2}^{(\epsilon-1)}$$

при ρ = 2.

После *E*-й редукции в случае периодических условий типа (13) останется ρ уравнений (38) с индексами $l = 0, \frac{V}{\rho}, \frac{2V}{\rho}, \ldots, V - \frac{V}{\rho}$ и $\rho - 1$ уравнений с индексами $l = \frac{V}{\rho}, \frac{2V}{\rho}, \ldots, V - \frac{V}{\rho}$ в случае нулевых условий типа (11). Из этих уравнений находим соответствующие \overline{V}_l , а затем на обратном ходе редукции — все остальные значения одномерных гармоник потенциала, пользуясь соотношением

$$\overline{V}_{l} = (\overline{V}_{l+2^{\mathfrak{e}}} + \overline{V}_{l-2^{\mathfrak{e}}} - Q_{l}^{(\mathfrak{e})})/\mu^{(\mathfrak{e})}$$

$$\tag{41}$$

ДЛЯ

$$\varepsilon = E - 1, E - 2, \dots, 0$$
 и $l = 2^{\varepsilon}, 2^{\circ} + 2^{\varepsilon+1}, 2^{\circ} + 2 \cdot 2^{\varepsilon+1}, \dots, V - 2^{\varepsilon}.$

Для р = 2 обратный ход начинается с последовательного вычисления

$$\overline{V}_{0} = -\left(\mu^{(E)}Q^{(E)} - 2Q^{(E)}_{V/2}\right)/[\mu^{(E)}]^{2} - 4]$$
(42)

И

$$\overline{V}_{V/2} = (2\overline{V}_0 - Q_{V/2}^{(E)})/(\mu^{(E)})$$
(43)

при периодических ГУ или с вычисления

$$\overline{V}_{V/2} = -\frac{Q_{V/2}^{(E)}}{\mu^{(E)}}$$
(44)

при нулевых ГУ по индексу *l*.

ж) Общий одномерный Фурье-синтез проводится для всех k и l по индексу j (в продольном x-направлении) и является заключительной операцией алгоритма, определяющей значения потенциала во всех узлах сетки:

$$U_{i, k, l} = \frac{1}{2} \left(\overline{V}_{0, k, l}^{c} + (-1)^{i} \overline{V}_{N/2, k, l}^{c} \right) + \sum_{j=1}^{N/2-1} \left(\overline{V}_{j, k, l}^{c} \cos \frac{2\pi i j}{N} + \overline{V}_{j, k, l}^{s} \sin \frac{2\pi i j}{N} \right).$$
(45)

Здесь, как и ранее, желательно использовать алгоритм БПФ.

Примечание. Выполнение циклических редукций в) и е) может быть ускорено, если $\lambda^{(r_0)}$, $\mu^{(\varepsilon_0)} > 10^5 \rightarrow 10^7$ ($r_0 < R$, $\varepsilon_0 < E$) [1,5]. При этом вычисления на прямом ходе редукции прекращаются и «перескакивают» на соответствующий шаг обратного хода, начиная с определения

$$V_{k} = -\Phi_{k}^{(r_{o})}/(\lambda^{(r_{o})})$$

$$\tag{46}$$

или

$$\overline{V}_{l} = -Q_{l}^{(\epsilon_{0})}/(\mu^{(\epsilon_{0})}), \qquad (47)$$

где

$$k = 2^{r_0}, 2 \cdot 2^{r_0}, \ldots, M - 2^{r_0}, a \ l = 0, 2^{\epsilon_0}, \ldots, V - 2^{\epsilon_0}.$$

ЛИТЕРАТУРА

- Hockney R. W. A Fast Direct Solution of Poisson's Equation Using Fourier Analysis, journal of the ACM, vol. 12, № 1, january 1965, p.34—53.
 Романов В. П., Рошаль А. С., Галимуллин В. И. О расчете
- Романов В. П., Рошаль А. С., Галимуллин В. И. О расчете методом Монте-Карло плоского электронного потока в скрещенных полях.—«Изв. вузов. Радиофизика»; XIII, 7, 1970, с. 1096—1105.

- 3. Романов В. П., Рошаль А. С., Галимуллин В. И. О расчете методом Монте-Карло цилиндрического электронного потока в скрещенных полях.—«Изв. вузов. Радиофизика», 1970, XIII, 10, с. 1554—1562.
- 4. Yu S. P. Kooyers G. P. Buneman O. Time Dependent Computer Analysis of Electron — vare Interaction in Crossed Fields, J of Applied Physics, v. 36, № 8, August 1965, p. 256-300.
- 5. Романов В. П., Рошаль А. С. О решении уравнения Пуассона для области взаимодействия электронных приборов. «Изв. вузов. Радиофизика», 1971, XIV, 7, с. 197—1104.
- 6. «Тр. ин-та инж. по электротехн. и радиоэлектронике» (русский перевод), 1967, т. 55, № 10, с. 154—163.
- IEEE Transaction on Audio and Electroacoustics, June 1967 vol. AV-15, Special Issue on FFT, p. 95 – 133.
- IEEE Transaction on Audio and Electroacoustics, June 1969, vol. AV 17, Special Issue on FFT, p. 48-74.