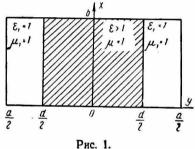
А. Ф. Зоркин, канд. физ.-мат. наук, Л. Ф. Картавцева, З. В. Иванишина

ГРАФИЧЕСКИЙ МЕТОД РАСЧЕТА ДИАПАЗОНА одноволнового режима трехслоиного симметричного волновода прямоугольного сечения

Прямоугольные волноводы со слоистым заполнением диэлектриками широко используются в различных СВЧ-устройствах: фазовращателях, согласующих трансформаторах, ферритовых устройствах. Один из важных вопросов, возникающих при разра-

ботке таких устройств — определение рабочего диапазона частот, т. е. диапазона частот, в котором возможно распространение одного елинственного основного типа волны. Формулы для расчета спектра критических частот слоистых прямоугольных волноволов получены в работе *. Однако эти формулы представляют собой трансцендентные уравне-



ния, решение которых без применения ЭВМ нерационально. В настоящей работе описан прием преобразования трансцендентного уравнения к алгебраическим выражениям, допускаюшим графическое представление для различных геометрических размеров поперечного сечения симметричных слоистых волноводов. С помощью этих графиков можно быстро произвести инженерный расчет диапазона одноволнового режима.

Преобразование характеристических трансцендентных уравнений. Рассмотрим прямоугольный волновод с трехслойным симметричным заполнением (рис. 1). Слои образованы идеальными и изотропными диэлектриками. Средний слой представляет собой более плотную среду по сравнению с боковыми слоями $(\epsilon > \epsilon_1)$. Относительные магнитные проницаемости всех слоев одинаковы: стенки волновода идеально проводящие.

В таком волноводе могут распространяться четные и нечетные LE- и LM-типы волн. Основной тип — LE_{01} -волна, ближайшие высшие типы — волны LE_{02} и LM_{10} . Дисперсионные уравнения для данных типов волн представлены формулами (П. 60). (П. 59) и (П. 47) **.

[•] Егоров Ю. В. Частично заполненные прямоугольные волноводы. М., «Советское радио», 1967. 215 с.

Преобразуем эти трансцендентные уравнения для критического случая $k_z = 0$, для чего введем безразмерные параметры

$$\alpha_c = d/\lambda_c; \ \beta_c = a/\lambda_c; \ \vartheta = \lambda_c/2b,$$
 (1)

где λ_c — критическая длина волны.

Учитывая введенные параметры, представляем уравнения (II. 60), (II. 59) и (II. 47) при $k_z = 0$ следующим образом.

1. Волна LÉ₀₁-типа (уравнение (II. 60)):

$$\beta_c = \alpha_c + \frac{1}{\pi} \operatorname{arcctg} \sqrt{\varepsilon} \operatorname{tg} \pi \alpha_c \sqrt{\varepsilon}; \tag{2}$$

 $0 \leqslant \alpha_c \leqslant 1/2\sqrt{\epsilon}$.

2. Волна LE_{02} -типа (уравнение (II. 59)):

a)
$$0 \leqslant \alpha_c \leqslant 1/2\sqrt{\varepsilon}$$
;
 $\beta_c = \alpha_c + 0.5 + \frac{1}{\pi} \operatorname{arcctg} \frac{1}{\sqrt{\varepsilon}} \operatorname{tg} \pi \alpha_c \sqrt{\varepsilon}$; (3)

6)
$$1/2\sqrt{\varepsilon} \leqslant \alpha_c \leqslant 1/\sqrt{\varepsilon}$$
;
 $\beta_c = \alpha_c + \frac{1}{\pi} \arctan \frac{1}{\sqrt{\varepsilon}} \operatorname{ctg} (\alpha_c \sqrt{\varepsilon} - 0.5) \pi$. (3a)

3. Волна LM₁₀-типа (уравнение (II. 47)):

$$\beta_c = \alpha_c = \frac{1}{\pi \sqrt{\vartheta^2 - 1}} \operatorname{arcth} \frac{1}{\sqrt{\varepsilon}} \sqrt{\frac{\varepsilon - \vartheta^2}{\vartheta^2 - 1}} \operatorname{tg} \pi \alpha_c \sqrt{\varepsilon - \vartheta^2}$$
 (4)

Рассматривая два предельных случая: $\alpha_c = 0$, $\beta_c \neq 0$ (d = 0, пустой волновод) и $\alpha_c = \beta_c$ (d = a, полностью заполненный волновод), из (4) находим возможные пределы изменения величины ϑ :

$$1 \leqslant \vartheta \leqslant \sqrt{\varepsilon}. \tag{5}$$

В случае пустого волновода $\alpha_c=0,\ \vartheta=1,\ \mathbf{r}.\ \mathbf{e}.\ \lambda_c=2b$ и $\beta_c=a/2b,\$ в случае заполненного — $\alpha_c=\beta_c,\ \vartheta=\sqrt{\varepsilon},\ \mathbf{r}.\ \mathbf{e}.\ \lambda_c=2b\sqrt{\varepsilon}$ и $\beta_c=\alpha_c=a/2b\sqrt{\varepsilon}.$ Однако анализ выражения (4) показал, что на интервале $0\leqslant\alpha_c\leqslant a/2b\sqrt{\varepsilon}$ функция β_c для каждого значения ϑ имеет асимптоту ($\beta_c=\infty$), уравнение которой $\alpha_c=\alpha_{ac}$.

Величину аас находим по формуле

$$\alpha_{ac} = \frac{1}{\pi V \varepsilon - \vartheta^2} \operatorname{arctg} \varepsilon \sqrt{\frac{\vartheta^2 - 1}{\varepsilon - \vartheta^2}}.$$
 (6)

Таким образом, для заданных величин ϵ и ϑ значения α_o лежат в интервале:

$$0 \leqslant \alpha_c \leqslant \alpha_{ac}. \tag{7}$$

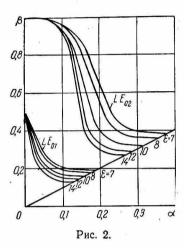
Итак, трансцендентные уравнения (II. 60), (II. 59) и (II. 47) преобразованы в алгебраические выражения (2) — (4). Зависимости (2), (3), (3,a), (3,6) удобно представить на плоскости $\alpha_c - \beta_c$ в виде семейства кривых, используя ε как параметр (рис. 2). Выражение (4) следует изобразить на плоскости $\alpha_c - \beta_c$ в виде семейства кривых по ϑ для заданного значения ε , т. е. необходимо

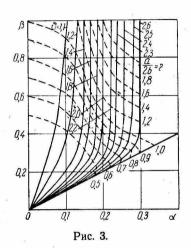
построить серию семейств для ряда значений ε , по которым построены семейства кривых с помощью (2), (3), (3,a), (3,6). В качестве примера на рис. З представлено семейство кривых, построенное по формуле (4) при $\varepsilon = 9$.

Для конкретных расчетов критических длин волн LE_{01} и LE_{02} -типов соотношения (2) и (3) необходимо дополнить урав-

нением прямой в системе координат (α_c , β_c):

$$\beta_c = \frac{a}{d} \alpha_c, \tag{8}$$





что следует из определения (1). Изменение длины волны λ_c при фиксированном отношении (a/d) приводит к движению точки наблюдения по прямой (8). Отмечая на рис. 2 точки пересечения этой прямой с кривыми для LE_{01} и LE_{02} при заданном ε , находим соответствующие значения β_c и рассчитываем λ_c :

$$\lambda_c = a/\beta_c. \tag{9}$$

Для расчета критической длины волны типа LM_{10} , уравнение (4) необходимо дополнить не только уравнением прямой (8), но и уравнением гиперболического типа:

$$\beta_c = \frac{a/2b}{\vartheta} \,. \tag{10}$$

Семейство кривых уравнения (9) при различных значениях отношения a/2b наносится на графиках уравнения (4), как показано на рис. 3. Критическая длина волны λ_c определяется по формуле (9), где β_c — координата точки пересечения прямой (8) с кривой (10).

Зная критические длины волн LE_{01} -, LE_{02} - и LM_{10} -типов, можно установить основной тип волны (наибольшая критическая длина волны) и ближайший высший тип (самая большая после основной критическая длина волны) и, следовательно, определить диапазон одноволнового режима.