ПОГРЕШНОСТЬ НЕЭКВИДИСТАНТНОГО ДАТЧИКА СВЧ-МОЩНОСТИ В МНОГОМОДОВОМ ВОЛНОВОДЕ

А. И. Сиротников, В. С. Жилков Харьков

В работе [1], показано, что при соответствующем неэквидистантном расположении квадратичных элементов датчика мощности расширяется его частотный диапазон, значительно уменьшается погрешность рассогласования и улучшается согласование датчика с передающим трактом.

При измерениях в многомодовых волноводах возникает дополнительная погрешность, обусловленная высшими типами волн.

Эту погрешность можно учесть следующим образом.

Обобщим формулы работы [1] на случай произвольного *i-*го мода. Тогда для неэквидистантного датчика

$$G_i^{\Sigma} = NG_iC_i, \tag{1}$$

где G_i^{Σ} — суммарный «отклик» системы из N одинаковых квадратичных элементов под воздействием i-го мода;

$$C_i = 1 + |\Gamma_i|^2 + 2S_i |\Gamma_i|; \tag{2}$$

$$S_{i} = \cos \left(\psi_{i} + \beta_{i} L_{\text{obin}} \right) \prod_{n=1}^{m} \cos \left(\beta_{i} L_{n} \right). \tag{3}$$

Для пондеромоторного датчика под «откликом» G_i следует понимать вращающий момент T_i .

Используя формулы работы [2], находим, что погрешность неэквидистантного датчика

$$\xi = \xi_1 + \sum_{i=2}^{\infty} \xi_i.$$

При измерении падающей мощности основного мода

$$\xi_1 = |\Gamma_1|^2 + 2S_1|\Gamma_1|; \tag{4}$$

$$\sum_{i=2} \xi_i = \sum_{l=2} A_i B_l C_l, \tag{5}$$

а при измерении проходящей мощности основного мода

$$\xi_{1} = \frac{2 |\Gamma_{1}| (|\Gamma_{1}| + S_{1})}{1 - |\Gamma_{1}|^{2}};$$
 (6)

$$\sum_{i=2} \xi_i = \frac{1}{1 - |\Gamma_1|^2} \sum_{i=2} A_i B_i C_i. \tag{7}$$

В формулах (5) и (7) величина C_t определяется выражением (2) настоящей работы.

Следует отметить, что значение S_i берется со знаком плюс, так же, как и модуль комплексного коэффициента отражения нагрузки.

Если неэквидистантный датчик расположен посередине волновода, для расчета коэффициентов B_i в выражениях (5) и (7) можно

воспользоваться формулами (16) — (20) работы [3].

В таблице приведены результаты расчета максимальной погрешности при измерении падающей мощности основного мода для следующих условий:

размеры волновода d = 2,3 см, h = 1 см;

решетка рассчитана на диапазон частот 8,2—12,5 Гги;

датчик расположен посередине волновода и состоит из металлических ($\varepsilon \to \infty$) дисков диаметром 0,4 *см* и толщиной 0,02 *см*; рабочая частота 10,7 Гец, частота второй гармоники 21,4 Гец; учитывается действие модов H_{10}^{\Box} , H_{20}^{\Box} , H_{30}^{\Box} , H_{01}^{\Box} , H_{11}^{\Box} , E_{11}^{\Box} ;

уровень каждого из модов относительно доминантного составляет — 30 $\partial 6$ по мощности ($A_t = 0.1\%$);

коэффициент отражения нагрузки считается одинаковым для всех модов ($|\Gamma_i| = |\Gamma|$).

 I	Погрешность, %	Количество элементов датчика			
		1	2	4	8
0,05	ξ ₁	10,2	1,7	1,4	0,5
	$\sum_{i=2}^{\xi_i} \xi_i$	1,0	1,0	1,0	0,9
	ξ,	21	4,0	3,4	1,5
0,1	$\sum_{i=2}^{\infty} \xi_i$	1,1	1,0	1,0	1,0

Таким образом ясно, что погрешность, обусловленная высшими типами волн, в основном определяется модальным распределением мощности и величинами относительных моментов. Погрешность, связанная с основным модом, зависит от коэффициента отражения нагрузки и от порядка решетки.

Отметим, что в другом частотном диапазоне при соответствующем изменении всех размеров порядок погрешности не изменяется.

ЛИТЕРАТУРА

1. А. И. Сиротников, В. С. Жилков. Об одном подходе к синтезу многоэлементных датчиков мощности СВЧ. Сб. «Радиотехника», вып. 24. Изд-во ХГУ, Харьков, 1973, с. 77—82. 2. В. С. Жилков, А. И. Сиротников. О погрешности двухпластин-

чатого пондеромоторного ваттметра, обусловленной высшими типами волн. Сб. «Радиотехника», вып. 22. Изд-во ХГУ, Харьков, 1972, с. 100—104.

3. В. С. Жилков, А. И. Сиротников, А. Н. Хижняк. О погрешности однопластинчатого пондеромоторного ваттметра, обусловленной высшими типами волн. Сб. «Радиотехника», вып. 21. Изд-во ХГУ, Харьков, 1972, c. 165-170.