О ВЛИЯНИИ ЭКСЦЕНТРИСИТЕТА ЭЛЛИПТИЧЕСКОГО ВОЛНОВОДА НА СТРУКТУРУ ПОЛЯ ВОЛНЫ Есон А. И. Терещенко, В. Л. Семаков Харьков

В настоящее время применяются СВЧ-устройства со сложными граничными поверхностями, так как с их помощью удается получить существенное улучшение параметров. Подобные устрой-

110

ства по ряду причин, в том числе и технологических, нередко выполняются с плавно изгибающимися криволинейными границами.

При изучении определенного класса систем желательно распространить на них общий подход, который позволил бы выяснить общие закономерности зависимости электрических параметров от формы и размеров систем, а также от типа волны. С учетом изложенного при рассмотрении полых волноводов и резонаторов целесообразно взять в качестве такой обобщенной граничной поверхности эллиптический цилиндр. Изменением его эксцентриситета е можно в значительных пределах варьировать форму поперечного сечения. При этом легко осуществить предельные переходы, с одной стороны, к круглому волноводу (при $e \rightarrow 0$), с другой, — к плоско-параллельной системе (при $e \rightarrow 1$, $a \rightarrow \infty$, где a — большаяполуось эллипса). Задача об эллиптическом волноводе имеет также самостоятельное значение и выход в практику в связи с применением эллиптических волноводов [1 — 4].

Вопрос о распространении электромагнитных волн в эллиптических волноводах неоднократно привлекал внимание исследователей [5 — 8], однако он требует дальнейшего уточнения и развития. В частности, необходимо дополнительное изучение волны, E_{c01} , в случае которой мы можем наиболее просто проследить влияние формы граничных поверхностей на структуру поля и на параметры системы.

Необходимо отметить, что структура поля этого типа волны впервые полученная Чу [5] и воспроизведенная в ряде работ [9—11], является неверной [7,8].

Итак, рассмотрим распространение волны *E*_{c01} в эллиптическом волноводе. Компоненты полей для такой системы, согласно [12]:

$$E_{\xi} = \frac{\beta_{c01}}{\omega \epsilon_{0}} H_{\eta} = -\frac{i\beta_{c01}}{\kappa_{c\ c01}^{2} l_{l}} C_{01} C \dot{e}_{0} (\xi, q_{c01}) c e_{0} (\eta, q_{c01});$$

$$E_{\eta} = -\frac{\beta_{c01}}{\omega \epsilon_{0}} H_{\xi} = -\frac{i\beta_{c01}}{\kappa_{c\ c01}^{2} l_{1}} C_{01} C e_{0} (\xi, q_{c01}) c e_{0} (\eta, q_{c01});$$

$$E_{z} = C_{01} C e_{0} (\xi, q_{c01}) c e_{0} (\eta, q_{c01}); \quad H_{z} = 0.$$
(1)

Зависимость поля от z и t в виде $\exp[i(\omega t - \beta_{c01} z)]$ опущена. В формулах (1) $ce_0(\eta, q_{c01}), Ce_0(\xi, q_{c01})$ — обычная и модифицированная функции Матье нулевого порядка, штрих обозначает производную по соответствующему аргументу; β_{c01} , κ_{cc01} — постоянная распространения и критическое волновое число волны; $l_1 = h \sqrt{ch^2 \xi - cos^2 \eta}$ — коэффициент Ламе $h_{\xi} = h_{\eta}$ эллиптической системы координат; h — полуфокусное расстояние. Параметр q_{c01} функции Матье, связанный с критическими параметрами волновода соотношением

$$q_{c01} = \frac{h^2}{4} k_{c\ c01}^2 = \frac{h^2 \pi^2}{\lambda_{c\ c01}^2}, \qquad (2)$$

определяется как первый параметрический корень уравнения

$$Ce_0(\xi_0,q) = 0,$$
 (3)

где $\xi_0 = \text{Arch}(1/e)$ — координата внутренней границы волновода.

Из уравнений (1) и (3) можно определить критические частоты, а также напряженности полей и их компоненты в любой точке поперечного сечения. Удобной формой представления структуры поля являются диаграммы линий относительной напряженности поля

$$\frac{A(\xi,\eta)}{A_{\max}} = \Delta = \text{const},$$
(4)

где $A\xi, \eta$ — некоторая составляющая поля волны; A_{\max} — ее максимальное значение. Как следует из (1), под A достаточно иметь в виду E_z , E_ξ , E_η , а также $E_\perp = \sqrt{E_z^2 + E_z^2}$.

Произведен расчет критического параметра функции Матье, а также линий относительной величины напряженности поля

e	<i>q</i> _{c01}	e	9 _{c01}
0.05	0.003619	0.65	0.832587
0,10	0,014531	0,70	1.045529
0,15	0,032905	0,75	1.329833
0,20	0,059036	0.80	1,735308
0,25	0,093717.	0,85	2,377281
0,30	0,136548	0,90	3,597890
0,35	0,189451	0,95	7,077234
0,40	0,253306	0,96	8,772747
0,45	0,329830	0,97	11,565143
0,50	0,421454	0,98	17,074341
0,55	0,531723	0,99	33,319602
0,60	0,665971	0,999	316,9233

по формулам (3) и (4) с помощью ЭЦВМ М-20 для ряда значений эксцентриситета эллиптического сечения. Обычная функция Матье при этом представлялась в виде тригонометрического ряда, MOа дифицированная — в виде ряда по произведениям функций Бесселя. Вычисления производились в безразмерных параметрах Δ и координат, значение ∆ изменялось от 0 до 1 с шагом 0,1. В силу симметрии структуры поля относительно

осей сечения достаточно рассмотреть лишь один квадрант сечения ($0 \leqslant \eta \leqslant \pi/2$). По полученным данным были построены таблицы и графики, часть которых приводится с целью обсуждения и анализа.

Естественно рассматривать эллиптический волновод как круглый, деформированный в определенном поперечном направлении и проследить за изменением структуры поля при этой деформации, описываемой величиной эксцентриситета.

Прежде всего изменяется критическая частота волны. Достаточно подробно этот вопрос изложен в работе [6]. Более точные значения параметра q_{c01} , вычисленные для различных значений эксцентриситета, приведены в таблице.

Структура поля волны E_{c01} в эллиптическом волноводе несколько отличается от структуры аналогичной волны E_{01} в круглом: силовые линии поперечного электрического поля искривляются, оставаясь нормальными к границе волновода только в непосредственной близости от нее, магнитные силовые линии из круговых превращаются в некоторые эллипсоподобные кривые. Однако общий характер поля не изменяется. Так, максимум продольного поля E_z и нуль поперечных компонент поля остается в центре сечения.

Линии относительной величины или линии уровня продольного электрического поля волны E_{01} в круглом волноводе — это окружности, а в эллиптическом (рис, 1, a) — линии

$$Ce_0(\xi, q_{c01}) ce_0(\eta, q_{c01}) = \text{const.}$$
 (5)

Рис. 1.

С увеличением эксцентриситета линии уровня становятся все более несимметричными относительно центра, густота линий увеличивается по малой оси эллипса и уменьшается по большой, что свидетельствует о большей крутизне изменения напряженности поля E_z вдоль малой оси.

Линии относительной величины напряженности поперечного поля волны E_{01} в круглом волноводе также представляют собой окружности. Максимум поля — окружность $r/a_0 = 0.766$, где a_0 радиус волновода. В эллиптическом волноводе эти линии имеют более сложный характер (рис. 1,6). Максимум поли расположен на малой оси эллипса, с увеличением экспентриситета поле ком бы концентрируется в области точки максимума. Это естественно, так как поперечное электрическое поле носит градиентный характер по отношению к скалярной функции $E_z(\xi, \eta)$ и в месте ее более

быстрого изменения имеет большую величину.

На рис. 2 приведена зависимость положения максимума поперечного поля по осям сечения от его эксцентриситета. С ростом е точка максимума поля по большой оси, показанная слева, сдвигается к центру, а по малой (она показана справа) — к периферии волновода. При $e \approx 0,68$ положения максимума поля по большой оси и фокуса эллипса совпадают.

Динамику изменения структуры поля показывают также линии уровня поперечных компонент электрического и магнитного полей волны. В круглом волноводе эти линии совпадают с линиями полного магнитного поля -окружностями (в случае поля E_{ξ} , H_{η}), либо отсутствуют (в случае E_{τ} , H_{ξ}). Распределение E_{ξ} компоненты волны Есон с ростом эллиптичности сечения (рис. 3, а, б) все более отличается от распределения поля E_{\perp} в круглом волноводе. Величина Е, равная ну*та* лю на большой полуоси (x < h), возрастает к периферии сечения, достигая максимума в точке

максимума поперечного поля E_{\perp} на малой полуоси при данном эксцентриситете, так как $E_{\gamma}(\xi, \pi/2) = 0$. При больших эксцент-

риситетах эта компонента, как и все поперечное поле, как бы концентрируется в районе точки максимума. Компонента E_{η} поля волны (рис. 4,*a*,*б*), вообще отсутствующая в круглом волноводе, с ростом эксцентриситета имеет значительную величину во все большей области сечения волновода. В отличие от E_{ξ} компонента E_{η} отсутствует на участке большой оси от фокуса до грани-

Рис. 4.

цы волновода. При не очень больших эксцентриситетах $\max E_{\eta} = \lim_{\eta \to +0} E_{\eta}(0,\eta)$, поскольку E_{η} (как и E_{ξ}) в точке фокуса выражается неопределенностью типа 0/0, следующей из (1). С этим же связана и сходимость линий уровня компонент поперечного поля в точку фокуса. При e > 0,68 положение максимума E_{η} и поперечного поля совпадают, так как $E_{\xi}(0, \eta) = 0$.

Сравнивалось распределение электрического и магнитного полей волны по малой оси сильно вытянутого эллипса сечения волновода со структурой поля волны E₁ в поперечном сечении плоско-параллельной системы. Различие между ними при E = 0.999составляет не более 0,0005.

Из изложенного выше видно, что происходит непрерывный переход структуры волны Е. в круглом волноводе (при малых эксцентриситетах эллипса) в структуру волны Е1 в плоско-параллельном волноводе (для части эллиптического сечения с $e \approx 1$, прилежащей к его малой оси).

Покажем теперь, что критическое волновое число ке со1, рассчитанное для случая е → 1, совпадает с получающимся числом для плоско-параллельной системы. Для функции Cem (z, q) при а большом и положительном имеется приближенная формула [12], из которой следует, что приближенное значение q_{c01} первого параметрического корня уравнения(3) при большом а определяется соотношением

$$q_{\rm col} \approx \left\{ \frac{\pi}{2} + \arctan \sqrt{\frac{1-e}{1+e}} \right\}^2 \frac{e^2}{4\left(1-e^2\right)}.$$
 (6)

В случае $e \to 1$ вторым членом в фигурных скобках можно пренебречь, тогда

$$q_{c01} \approx \frac{\pi^2 e^2}{16 (1-e^2)}$$
 (7)

Легко проверить, что полученные значения q_{c01} (см. табл.) стремятся к определяемым формулой (7) при $e \to 1$. Далее, из (2), (7) и соотношений между геометрическими размерами эллиптического поперечного сечения волновода следует, что

$$\lim_{e\to 1}\kappa_{c\ c01}=\frac{\pi}{2b}\,,$$

т. е. совпадает с критическим волновым числом κ_{cl} волны E_1 в плоско-параллельном волноводе.

Таким образом, с изменением эксцентриситета эллиптического волновода наряду с переходом структур полей наблюдается также переход критической частоты волны Есо1 в критические частоты волн E_{01} в круглом волноводе (при $e \to 0$) и E_1 в плоскопараллельной системе (при $e \rightarrow 1$).

Изложенные выше результаты могут быть полезны при конструировании волноводно-резонаторных систем СВЧ, выполняемых в виде эллиптических цилиндров различного эксцентриситета.

ЛИТЕРАТУРА

W. Krank. E. Schüttlöffil, Telefunken Zeitung, 1962, 35, 136, 112-116.
 W. Krank. E. Schüttlöffil, Nachrichtentechnische Zeitschrift, 1965,

18, 10, 607-615.

3. G. Möhring. Nachrichtentechnische Zeitschrift, 1965, 18, 12. 714-718.

4. Communications news, 1966. 3,3. 29 S.
 5. L. J. Chy. J. Appl, Phys., 1938, 9, 583-591.
 6. J. G. Kretzschmar. IEEE Trans. on Microwave Theory and Tech-niques, 1970, MTT-18, 9, 547-554.

7. В. Я. Сморгонский. «Радиотехника и электроника», 1959, 4, 2, 335—337.

J. G. Kretzschmar. Proc. Inst. Elec. Eng., 1971, 118, 9, 1187—1189.
 Б. А. Введенский, А. F. Аренберг. Радиоволноводы, ч. 1. Гостехиздат, 1946.

10. Р. Сарбахер, В. Эдсон. Техника сверхвысоких частот. Связьиздат, 1947.

11. Справочник по волноводам (под ред. Я. Н. Фельда). Изд-во «Советс-кое радио», 1952.

12. Н. В. Мак-Лахлан. Теория и приложения функций Матье. Изд-во иностр. лит-ры, 1953.