К РАСЧЕТУ МЕАНДРОВОЙ НЕСИММЕТРИЧНОЙ ПОЛОСКОВОЙ ЛИНИИ

В. И. Дядюк, А. Ф. Зоркин Харьков

Меандровые полосковые линии уже рассматривались ранее [1]. Однако результаты этой работы трудно использовать для инженерных расчетов. В настоящей статье приводятся формулы для расчета дисперсии и волнового сопротивления меандровой линии которые в сочетании с табличными данными позволяют производить инженерные расчеты.

95

Рассмотрим меандровую несимметричную полосковую линию на магнитодиэлектрической подложке, представленную на рис. 1, где a — меандровый проводник, b — подложка, e — заземленная плоскость. Меандровая линия, образованная идеально проводящими проводниками, лежащими на подложке со скалярными параметрами $\varepsilon = \varepsilon_r \varepsilon_0$, $\mu = \mu_r \mu_0$, бесконечна в направлении x. Считая, что вдоль проводников меандровой линии распространяется квази-ТЕМ-волна и выполняется условие $L - d \ll h$, меандровую линию

Рис. 1. Меандровая несимметричная полосковая линия.

можно представить как многопроводную линию, состоящую из параллельных металлических лент, концы которых попарно соединены в сечениях z = = 0, z = h (рис. 1).

Для решения такой системы применим метод многопроводных линий [2]. Присвоим проводникам многопроводной линии номера $P = 0, \pm 1, \pm 2...$

Известно [2], что анализ периодического 2P + 1 - полюсника можно свести к анализу упрощенного 2(Q + 1)-полюсника, содержащего полюса только одного периода. Так как меандровая линия двухступенчата (Q = 2), то ее «упрощенная» матрица передачи А' имеет вид

$$A' = \begin{bmatrix} I \cos \gamma h, & i \frac{\omega}{\gamma} L' \sin \gamma h \\ i \frac{\omega}{\gamma} C' \sin \gamma h, & I \cos \gamma h \end{bmatrix}.$$
 (1)

Здесь

$$L' = \begin{bmatrix} L'_0, & L'_1 e^{i\varphi} \\ L'_1 e^{-i\varphi}, & L'_0 \end{bmatrix}; \ C' = \begin{bmatrix} C'_0, & C'_1 e^{i\varphi} \\ C'_1 e^{-i\varphi}, & C'_0 \end{bmatrix},$$
$$L'C' = I \frac{\gamma^2}{\omega^2},$$

где

I — единичная матрица;

— круговая частота;

 ү — постоянная распространения вдоль z;

φ= βL — фазовый сдвиг на полпериода системы;

β — постоянная распространения вдоль x.

Потенциалы $V_0(z)$, $V_1(z)$ и токи $I_0(z)$, $I_1(z)$ на периоде меандровой линии связаны соотношением

$$\begin{bmatrix} V_0 (0) \\ V_1 (0) \\ I_0 (0) \\ I_1 (0) \end{bmatrix} = A' \begin{bmatrix} V_0 (h) \\ V_1 (h) \\ I_0 (h) \\ I_1 (h) \end{bmatrix}.$$
 (2)

Учитывая граничные условия

$$V_{1}(0) = V_{0}(0), V_{1}(h) = V_{0}(h) e^{-i2\varphi}, I_{1}(0) = -I_{0}(0),$$
$$I_{1}(h) = -I_{0}(h) e^{-i2\varphi},$$

получаем дисперсионное уравнение

$$\operatorname{ctg}^{2} \gamma h = \frac{\omega^{2}}{\gamma^{2} \sin^{2} \varphi} (C_{0}^{\prime} \cos \varphi + C_{1}^{\prime}) (L_{0}^{\prime} \cos \varphi + L_{1}^{\prime}), \qquad (3)$$

где

$$\gamma = \omega \sqrt{C_0' L_0' + C_1' L_1'}.$$
 (4)

Волновое сопротивление «меандра» определим как отношение

$$Z_{M} = \frac{V_{1}(h)}{I_{1}(h)} = \frac{V_{0}(h)}{I_{0}(h)} = \sqrt{\frac{L_{0}^{\prime}\cos\varphi - L_{1}^{\prime}}{C_{0}^{\prime}\cos\varphi - C_{1}^{\prime}}}.$$
 (5)

Элементы «упрощенных» матриц L' и C' выражаются через волновые проводимости M (φ) и сопротивление K (φ) регулярной многопроводной линии [2]:

$$C'_{0} = \frac{\gamma}{2\omega} [M(\varphi) + M(\pi - \varphi)]; \ L'_{0} = \frac{\gamma}{2\omega} [K(\varphi) + K(\pi - \varphi)];$$

$$C'_{1} = \frac{\gamma}{2\omega} [M(\varphi) - M(\pi - \varphi)]; \ L'_{1} = \frac{\gamma}{2\omega} [K(\varphi) - K(\pi - \varphi)].$$
(6)

Здесь

$$M(\varphi) = \varepsilon_0 \frac{\omega}{\gamma} \left(C_0 + 4 \sum_{p=1}^{\infty} C_p \sin^2 \frac{p\varphi}{z} \right),$$

$$K(\varphi) = \mu_0 \frac{\omega}{\gamma} \left(L_0 + 4 \sum_{p=1}^{\infty} L_p \cos^2 \frac{p\varphi}{2} \right),$$
 (7)

где $C_p = -c_{0p}/\epsilon_0$; $L_p = l_{0p}/\mu_0$ — безразмерные коэффициенты емкости и индуктивности; c_{0p} , l_{0p} — взаимные емкости и индуктивности между 0-м и *p*-м проводниками.

Таким образом, задача расчета дисперсии и волнового сопротивления меандровой линии свелась к вычислению коэффициентов C_p и L_p регулярной многопроводной линии. Безразмерные емкостные коэффициенты C_p можно вычислить, решая задачу об определении квазистатического поля регулярной многопроводной линии, поперечное сечение которой показано на рис. 2. Напряженность электрического поля будем искать в виде

$$E = -\nabla\varphi(x, y) e^{-i\gamma z}.$$

В силу принципа суперпозиции электрической скалярный потенциал φ(x, y) пред-

потенциал $\varphi(x, y)$ представим в виде линейной комбинации

$$\varphi(x, y) =$$

$$= \sum_{p=-\infty}^{\infty} \varphi_p(x, y) V_p, (8)$$

Рис. 2. Поперечное сечение многопроводной линии, образованной проводниками «меандра».

где V_p— потенциал на *p*-м проводнике, а функция

$$\varphi_q(x, y) = \sum_{p=-\infty}^{\infty} \oint_{S_p} \frac{\partial \varphi_p(x', y')}{\partial n} G^{\Im}(x, y, x', y') dS_p, \qquad (9)$$

является решением задачи Дирихле в области D уравнения Лапласа

$$\nabla^2 \varphi_q (x, y) = 0 \tag{10}$$

с граничными условиями

$$\varphi_q = \delta_{kq} = \begin{cases} 1 & q = k, \\ 0 & q \neq k, \end{cases} k = 0, \pm 1, \pm 2 \dots$$
(11)

на контуре S_q поперечного сечения q-го проводника и $\varphi_q = 0$ на заземленной плоскости. Здесь D — верхняя полуплоскость с диэлектрическим слоем, за исключением площади поперечного сечения металлических проводников (рис. 2).

В (9) интегрирование производится по координатам источника (x', y').

Функция Грина $G^{\Im}(x, y, x', y')$, взятая из работы [3], имеет следующий вид:

$$G^{\mathfrak{D}} = \begin{cases} G_1^{\mathfrak{D}}(x, \ y, \ x', \ y'), & y \ge w; \\ G_2^{\mathfrak{D}}(x, \ y, \ x', \ y'), & y \le w, \end{cases}$$
(12)

где

$$G_1^{\mathfrak{S}} = \frac{\varepsilon_r + 1}{2} G_2^{\mathfrak{S}} - \frac{1}{4\pi} \sum_{r=1}^{\infty} (-1)^{\nu+1} \left(\frac{\varepsilon_r - 1}{\varepsilon_r + 1} \right)^{\nu+1} \times$$

$$\times \ln \frac{(x-x')^2 + (y+y'+2(v-1)w)^2}{(x-x')^2 + (y-y'-2(v+1)w)^2};$$

$$G_2^9 = \frac{1}{2\pi (\epsilon_r + 1)} \sum_{\nu=0}^{\infty} (-1)^{\nu} \left(\frac{\epsilon_r - 1}{\epsilon_r + 1}\right)^{\nu} \ln \frac{(x-x')^2 + (y+y'+2\nu w)^2}{(x-x')^2 + (y-y'-2\nu w)^2}.$$

Для определения неизвестных $\partial \varphi_q / \partial n$ подставим (11) в (9) и получим систему интегральных уравнений Фредгольма первого рода относительно $\partial \varphi_q (x', y') / \partial n$:

$$\delta_{kq} = \sum_{p=-\infty}^{\infty} \oint_{S_p} \frac{\partial \varphi_q(x', y')}{\partial n} G^{\mathfrak{d}}(x, y, x', y') dS_p.$$
(13)

Поскольку уравнения Фредгольма первого рода относятся к классу некорректных задач, целесообразно регуляризовать (13) путем введения малого параметра а [5]:

$$\alpha \frac{\partial \varphi_q(x, y)}{\partial n} = \sum_{p=-\infty}^{\infty} \oint_{S_p} \frac{\partial \varphi_q(x', y')}{\partial n} G^{\vartheta}(x, y, x', y') dS_p - \delta_{kq}.$$
⁽¹⁴⁾

Алгоритм для решения уравнения типа (14) приводится в работах [5, 6].

Заметим, что ядро уравнения (14) $G^{\ni}(x, y, x', y')$ имеет слабую особенность при $(x, y) \rightarrow (x', y')$. Для устранения этой особенности необходимо преобразовать интегралы, входящие в (14), с помощью приема, предложенного в работе [7]:

$$\int \varphi (x) K (x, y) dx = \int \varphi (x) [K (x, y) - \rho (x, y)] dx +$$

+
$$\int [\varphi (x) - \varphi (y)] \rho (x, y) dx + \varphi (y) \int \rho (x, y) dx, \qquad (15)$$

где

$$p(x, y) = \lim_{x \to y} K(x, y).$$

Определив $\varphi_q(x, y)$, найдем емкостные коэффициенты C_p :

$$C_{p} = - \oint_{S_{p}} \frac{\partial \varphi_{p}(x, y)}{\partial n} \, dS_{p}. \tag{16}$$

Определение коэффициентов индуктивности L_p

Для вычисления L_p решим задачу об определении квазистатического магнитного поля регулярной многопроводной линии (рис. 2). Напряженность магнитного поля ищем в виде

$$\tilde{H} = -\nabla \psi (x, y) e^{-i\gamma z}.$$

Представим магнитный скалярный потенциал $\psi(x, y)$ аналогично (8):

$$\psi(x, y) = \sum_{p=-\infty}^{\infty} \psi_p(x, y) I_p, \qquad (17)$$

7*

где I_{ρ} — ток на *p*-м проводнике; $\psi_{p}(x, y)$ является решением уравнения (10) в области *D* и удовлетворяет граничному условию $\partial \psi_{p}(x, y) / \partial n = 0$ на заземленной плоскости, а также соотношению

$$\int_{S_q} \frac{\partial \psi_p(x, y)}{\partial S_q} dS_q = \delta_{pq}.$$
 (18)

Пользуясь методикой [8], представим (18) в виде

$$\oint_{S_q+S_q^++S_q^-} \frac{\partial \psi_p(x, y)}{\partial S} dS = \int_{S_q^+}^{S_q} d\psi_p(S) = \psi_p(S_q^-) - \psi_p(S_q^+) = \delta_{pq}, \quad (19)$$

где S+ и S- - контуры разрезов (рис. 2).

Применив формулу Грина к $\psi_p(x, y)$ и функции Грина $C^M(x, y, x', y')$, получим систему интегральных уравнений Фредгольма второго рода относительно $\psi_q(x, y)$:

$$\psi_{q}(x, y) = \sum_{p=-\infty}^{\infty} \oint_{S_{p}} \psi_{q}(x', y') \frac{\partial}{\partial n} G^{M}(x, y, x', y') dS_{p} - - f_{q}(x, y), \qquad (20)$$

где

$$f_{\bullet}(x, y) = \int_{S_q} \frac{\partial}{\partial n} G^M(x, y, x', y') dS_q,$$
$$q = 0, \pm 1, \pm 2 \dots$$

Функцию Грина можно построить методом изображений для токов [4]. Она имеет вид

$$G^{M} = \begin{cases} G_{1}^{M} (x, y, x', y'), & y \ge \omega; \\ G_{2}^{M} (x, y, x', y'), & y \le \omega, \end{cases}$$
(21)

где

$$G_{1}^{M} = \frac{1+\mu_{r}}{2\mu_{r}} G_{r}^{M} + \frac{1}{4\pi} \sum_{\nu=1}^{\infty} \left(\frac{1-\mu_{r}}{1+\mu_{r}} \right)^{\nu+1} \times \{ \ln \left[(x-x')^{2} + (y+y'+y'+y'+y'+y')^{2} + \ln \left[(x-x')^{2} + (y-y'-2(\nu-1)w)^{2} \right] \};$$

$$G_{2}^{M} = \frac{M_{r}}{2\pi \left(1+\mu_{r} \right)} \sum_{\nu=0}^{\infty} \left(\frac{1-\mu_{r}}{1+\mu_{r}} \right)^{\nu} \times \{ \ln \left[(x-x')^{2} + (y-y'-2\nu w)^{2} \right] + \ln \left[(x-x')^{2} + (y+y'+2\nu w)^{2} \right] \}.$$

Для определения $\psi_p(x, y)$ из уравнения (20) необходима применить прием (15), поскольку ядро этого уравнения имеат слабую особенность при $(x, y) \rightarrow (x', y')$. Определив $\psi_p(x, y)$, можно вычислить коэффициенты индуктивности L_p по формуле

$$L_{p} = \int_{S_{p}^{-}} \frac{\partial \psi_{p}(x, y)}{\partial n} dS_{p}^{-}.$$
 (22)

Результаты вычислений

Описанный алгоритм был реализован на ЭВМ «Урал-4» для меандровой линии на диэлектрической подложке с бесконечно тонким ленточным проводником (t = 0). Решение производилось с учетом пяти проводников многопроводной линии ($p = 0, \pm 1, \pm 2$). Интегральные уравнения решались хорошо известным алгебраическим методом с применением квадратурной формулы Гаусса—Чебышева [7] с шестью узловыми точками. Параметр регуляризации а был выбран равным 10^{-5} . Результаты вычисления $C_0, C_1, C_2, L_0, L_1, L_2$ сведены в табл. 1—2. Отношение ширины полосы к толщине подложки d/w выбиралось по номограммам работы [9] таким образом, чтобы волновое сопротивление Z_0 одиночной несимметричной полосковой линии, образующей «меандр», равнялось 50 либо 70 ом.

Таблица 1

	L/d	Co	<i>C</i> 1	C ₂	L ₀	L ₁	L_2				
$\varepsilon_r = 3$ $d/w = 2,7$ $\varepsilon_r = 5$	1,25 1,5 1,75 2	9,645 11,83 14,15 16,53	7,857 9,526 12,50 13,14	5,954 7,048 8,215 9,436	0,1640 0,1675 0,1718 0,1750	0,0525 0,0599 0,0521 0,0459	0,1347 0,1334 0,1327 0,1322				
$\frac{d}{\omega} = 1,85$	1,25 1,5 1,75 2	7,146 8,496 9,974 11,50	6,090 7,109 8,232 9,443	4,949 4,931 6,354 7,136	0,3836 0,3848 0,3915 0,3971	0,1087 0,1171 0,2095 0,0993	0,2558 0,2514 0,2488 0,2470				
$\varepsilon_r = 7$ d/w = 1,38	1,25 1,5 1,75 2	6,260 7,253 8,353 9,548	5,479 6,221 7,050 7,953	4,669 5,139 5,665 6,238	0,6275 0,6296 0,6350 0,6392	0,1584 0,1601 0,1775 0,1671	0,3829 0,3741 0,3681 0,3639				
$\varepsilon_r = 9$ d/w = 1, 1	1,25 1,5 1,75 2	14,28 13,09 17,34 17,97	11,78 12,14 12,62 15,40	11,51 13,31 15,27 12,77	0,8514 0,8386 0,8451 0,8562	0,2072 0,2424 0,2461 0,2381	0,5066 0,4596 0,4026 0,4754				
$\varepsilon_r = 11$ $d/\omega = 0.9$	1,25 1,5 1,75 2	17,80 18,41 19,07 19,80	13,95 10,85 11,38 11,95	10,96 11,61 12,32 13,18	1,097 1,074 1,078 1,090	0,2665 0,3173 0,3504 0,3277	0,6606 0,6400 0,6247 0,6130				

Значение коэффициентов C_q и L_q (q = 0, 1, 2) при $Z_0 = 50$ ом

Таблица 2

	L/d	C ₀	<i>C</i> 1	C ₂	L ₀	L ₁	L ₂			
$\epsilon_r = 3$ d/w = 1.5 $\epsilon_r = 5$	1,25 1,5 1,75 2 1,25 1,5	5,465 6,312 7,228 2,530 4,378 4,753	4,780 5,422 6,119 2,607 4,074 4,352	4,041 4,449 4,893 3,793 3,759 3,933	0,4887 0,4879 0,3742 0,5026 1,045 1,024	0,1299 0,1441 0,1381 0,1274 0,2532 0,3005	0,3104 0,3042 0,3003 0,2976 0,6258 0,6066			
$d/\omega = 0,94$	1,75 2	5,169 5,521	4,663 5,003	4,126 4,338	1,029 1,041	0,3116 0,3075	0,5925 0,5820			
$\varepsilon_r = 7$ $d/\omega = 0,67$	1,25 1,5 1,75* 2	3,251 4,354 4,639 4,918	3,267 4,129 4,317 3,963	3,350 3,871 4,408 4,116	1,494 1,446 1,444 1,457	0,3817 0,4624 0,4957 0,5066	0,9816 0,9455 0,9920 0,9013			
$\varepsilon_r = 9$ d/w = 0,50	1,25 1,5 1,75 2	5,463 6,106 6,824 7,611	4,942 5,409 5,948 6,534	4,418 4,716 5,050 5,417	1,818 1,743 1,730 1,742	0,5124 0,6272 0,6807 0,7075	1,370 1,322 1,285 1,263			
$\epsilon_r = 11$ d/w = 0,39	1,25 1,5 1,75 2	4,051 4,171 4,364 4,448	3,937 4,029 4,123 4,228	3,625 3,883 3,945 4,012	2,071 1,957 1,930 1,937	0,6708 0,8208 0,8951 0,9376	1,834 1,772 1,723 1,682			

Значение коэффициентов C_a и L_a (q = 0, 1, 2) при $Z_0 = 70$ ом

Пользуясь данными, сведенными в таблицы, можно рассчи-тывать волновое сопротивление Z_M и требуемую ширину меандра h в заданном частотном диапазоне для фиксированных значений ф по формулам

$$Z_M \approx 377 \sqrt{\frac{L_0 + 4L_2 \cos^2 \varphi}{C_0 + 4C_2 \sin^2 \varphi}} o_{\mathcal{M}};$$
 (23)

$$h \approx \frac{4755}{f} \left[(C_0 + 2C_1 + 4C_2 \sin^2 \varphi) \left(L_0 + 2L_1 + 4L_2 \cos^2 \varphi \right) - 4C_1 L_1 \cos^2 \varphi \right]^{-\frac{1}{2}} \operatorname{arctg} \left\{ \operatorname{ctg} \sqrt{(C_0 + 4C_2 \sin^2 \varphi) \left(L_0 + 4L_2 \cos^2 \varphi \right)} \times \left[(C_0 + C_1 2 + 4C_2 \sin^2 \varphi) \left(L_0 + 2L_1 + 4L_2 \cos^2 \varphi \right) - 4C_1 L_1 \cos^2 \varphi \right]^{-\frac{1}{2}} \right] cm$$

$$(24)$$

(f — частота, Мги).

ЛИТЕРАТУРА

1. Е. В. Авдеев, И. Л. Чегис. «Радиотехника в электроника» 1971, № 10, с. 1808—1815. 2. Р. А. Силин, В. П. Сазонов. Замедляющие системы. Изд-во «Советско: радио», 1966, 632. с. 3. W. Weeks. IEEE Transaction, MTT-18, 1970, № 1, с. 35—43.

Электростатика и электродинамика. Изд-во 4. В. Смайт. иностр. лит-ры, 1954. 487 с. А.Б.Бакушинский. «Вычислительные метолы и программирование», вып. 3. Изд-во МГУ, 1965, с. 94-99. 6. А. Б. Бакушинский. «Вычислительные методы и программирование», вып. 5. Изд-во МГУ, 1966, с. 403-408. 7. P. Chestunt. IEEE Transaction. MTT-17, 1969. Nº 10. c. 734-745. 8. R. R. Gurta. IEEE Transaction, MTT-17, 1969, № 8, c. 479-484. 9. Е. В. Авдеев, В. И. Потапова. «Радиотехника», т. 26. № 8. 1971. c. 56-61.