ПАРАМЕТРЫ КРУГЛЫХ ДИАФРАГМИРОВАННЫХ ВОЛНОВОДОВ

М. П. Кухтин, С. В. Дегтярь Харьков

Исследованию параметров круглых диафрагмированных волноводов посвящено значительное количество работ [1, 2, 3], однако их авторы рассматривают либо симметричную E_{01} -волну, либо волну квази- EH_{11} . В работе [5] был проведен расчет критических частот и затухания квази- HE_{11} волны для различной геометрии диафрагм, однако данная задача решалась в нулевом приближении: полученные результаты дают лишь качественную картину.

В данной работе рассчитываются критические частоты и затухание волны HE_{11} с учетом высших пространственных гармоник и высших типов колебаний в промежутках между диафрагмами.

Расчет параметров данной системы производится методом Фурье [4]. При этом внутренняя полость волновода разбивается на две соосные цилиндрические области с общей границей на поверхности r=a (рис. 1). Электромагнитное поле в этом случае полностью определяется однокомпонентными (параллельными оси z) электрическим и магнитным векторами Γ ерца.

8 2-2028

Как и всякую периодическую структуру, бесконечную в положительном и отрицательном направлении оси г гофрированный волновод можно исследовать, применяя теорему Флоке [6]. Согласно этой теореме, любая компонента электромагнитного поля разлагается в ряд Фурье по пространственным гармоникам. Из-за периодичности по азимуту ф собственные волны распадаются на независимые гармоники, отличающиеся различной азимутальной симметрией.

Рис. 1.

Рассмотрим общий случай с n азимутальными вариациями. Поле в приосевой области I (0 < r < a, 0 < z < D) представим в виде бесконечной суммы пространственных гармоник. Выражения для векторов Герца запишутся следующим образом:

$$\Pi_{z}^{e} = \sum_{m=-M}^{M} \sum_{n=0}^{N} A_{mn} In(x_{m}r) \sin n\varphi e^{i\beta_{m}z};$$

$$\Pi_{z}^{m} = \sum_{m=-M}^{M} \sum_{n=0}^{N} B_{mn} In(x_{m}r) \cos n\varphi e^{i\beta_{m}z},$$
(1)

где

$$x_m^2 = k^2 - \beta_m^2;$$

$$\beta_m = \beta_0 + \frac{2\pi m}{D}$$

— искомая постоянная распространения; A_{mn} , B_{mn} — постоянные коэффициенты.

Поле в области // (a < r < b, t < z < t + d) естественно искать в виде разложения по стоячим волнам, удовлетворяющим граничным условиям

$$E_r = E_\varphi = 0$$
 при $z = t$, $z = t + d$.

В этом случае выражения для векторов Герца примут вид

$$\Pi_{z}^{e} = \sum_{s=0}^{S} \sum_{n=0}^{N} C_{sn} F_{n} (\rho_{s} r) \sin n\varphi \cos \frac{s\pi}{d} (z-t);$$

$$\Pi_{z}^{m} = \sum_{s=0}^{S} \sum_{n=0}^{N} D_{sn} P_{n} (\rho_{s} r) \cos n\varphi \sin \frac{s\pi}{d} (z-t),$$
(2)

$$F_{n}(\rho_{s}r) = In(\rho_{s}r) - \frac{I_{n}(\rho_{s}b)}{N_{n}(\rho_{s}b)} N_{n}(\rho_{s}r);$$

$$P_{n}(\rho_{s}r) = In(\rho_{s}r) - \frac{I'_{n}(\rho_{s}b)}{N'_{n}(\rho_{s}b)} N_{n}(\rho_{s}r);$$

$$\rho_{s}^{2} = k^{2} - \left(\frac{s\pi}{d}\right)^{s} \quad k = \frac{\omega}{c}.$$

Сшивая тангенциальные составляющие полей на границе областей, приходим к бесконечной системе алгебраических уравнений:

$$\sum_{m=-M}^{M} \sum_{s=0}^{S} \alpha_{msl} A_m + \beta_{msl} B_m = 0;$$

$$\sum_{m=-M}^{M} \sum_{s=0}^{S} \bar{\alpha}_{msl} A_m + \bar{\beta}_{msl} B_m = 0,$$
(3)

где

$$a_{msl} = U_{s} (\rho_{s}a) \frac{2x_{m}}{d (\delta_{s0} + 1)} \beta_{m} \beta_{e} \rho_{s} I' n (x_{m}a) (-1)^{m-l} - \delta_{ml} x_{l}^{2} In (x_{l}a) D;$$

$$\beta_{msl} = \frac{2\beta_{l}}{d (\delta_{s0} + 1)} \frac{n}{a} U_{s} \left[\left(\frac{s\pi}{d} \right)^{2} \left(\frac{x_{m}}{\rho_{s}} \right)^{2} - \beta_{m}^{2} \right] In (x_{m}a) (-1)^{m-l};$$

$$\bar{a}_{msl} = \frac{2}{d} \frac{n}{a} \left(\frac{s\pi}{d} \right)^{2} \frac{x_{m}\beta_{m}}{\rho_{s}} U_{s} I' n (x_{m}a) (-1)^{m-l} - \delta_{ml} \frac{\beta_{l}n}{a} In (x_{l}a) D;$$

$$\bar{\beta}_{msl} = \frac{2}{d} \left(\frac{s\pi}{d} \right)^{2} \left\{ \left(\frac{n}{a} \right)^{2} \frac{1}{\omega \epsilon \rho_{s}} \left[\left(\frac{s\pi}{d} \right)^{2} \left(\frac{x_{m}}{\rho_{s}} \right)^{2} - \beta_{m}^{2} \right] U_{s} - \right.$$

$$- x_{m}^{2} \frac{\omega \mu}{\rho_{s}} P_{s} \right\} In (x_{m}a) (-1)^{m-l} + \delta_{ml} I' n (x_{l}a) \omega \mu x_{l} D;$$

$$\gamma_{s}^{m(l)} = 2 \frac{\sin \frac{\beta_{m(l)}D + s\pi}{2}}{\beta_{m(l)}^{2} - \left(\frac{s\pi}{d} \right)^{2}};$$

$$U_{s} = \frac{F_{n} (\rho_{s}a)}{F_{n} (\rho_{s}a)} \gamma_{s}^{m} \gamma_{s}^{l};$$

$$P_{s} = \frac{P'_{n} (\rho_{s}a)}{P_{n} (\rho_{s}a)} \gamma_{s}^{m} \gamma_{s}^{l};$$

$$\delta_{ml} = \begin{cases} 0 & m \neq l; \\ 1 & m = l. \end{cases}$$

Условием существования нетривиального решения этой системы является обращение в нуль детерминанта бесконечной матрицы коэффициентов. Как видно из формулы (3), каждый элемент

матрицы представлен в виде бесконечной суммы по типам коле-

баний в области // (рис. 1).

Дисперсионное уравнение (3) решалось с помощью ЭЦВМ типа M-20. Критические частоты волны HE_{11} в зависимости от числа членов в элементах матрицы для волноводов с размерами, указанными в табл. 1, представлены в табл. 3. Из нее видно, что учет высших пространственных гармоник (m=1, 2, 3) не влияет существенно на величину критической частоты. Основными при расчете критических частот являются нулевой и первый типы колебаний в области II.

T	0	4	п	**	17	•	1
	2	O	71	и	ш	a	

17 PS					
№ волновода	а	ь	d	t	D
ı	25,1	28,5	5,355	2,5725	10,5
II	25,1	27,5	6,3	2.1	10,5
III	25,1	27,5	5,355	2,5725	10.5
IV	25,1	27,5	3,15	3,675	10,5
v	25,1	27,5	7,35	1,575	10,5
VI	25,1	28,1	5,355	2,5725	10,5
VII	26,1	28,5	5,355	2,5725	10,5
VIII	12,5	14,2	2,6553	1,32235	5,3
IX	13,0	14,2	2,6553	1,32235	5,3 5,3
X	12,5	13,7	2,6553	1,32235	5,3
XI	25,5	28,5	5,355	2,5725	10,5

Таблица 2

5					
№ волновода	I	III	IV .	v	VI
f _{кр} , Гец	3406,7	3414,3	3468,8	3360,9	3408,8
№ волновода	VII	VIII	IX	х	XI
f _{кр} , Ггц	3286,8	6844,5	6602,0	6859,4	3356,8

Зависимость критической частоты от геометрии системы для случая m=0, s=0,1 представлена в табл. 2. Из нее видно, что критическая частота диафрагмированного волновода близка к критической частоте гладкого волновода радиуса r=a, а изменение внешнего радиуса r=b (при неизменном внутреннем радиусе r=a) мало влияет на данный параметр.

При выводе дисперсионного уравнения предполагалось, что стенки диафрагмированного волновода являются идеально проводящими. В гладких волноводах затухание основного типа волны, вызванное омическими потерями, невелико. Однако в диафрагмированных волноводах полное затухание при некоторых соотношениях размеров может стать весьма ощутимым.

m	0	1	2
0	3502,3903	3502,3875	3502,382
1	3406,7381	3439,632	3445,874
2	3406,7285	3439,638	3445,881

При условии, что потери невелики, коэфициент затухания а запишем в таком виде:

$$\alpha = \frac{\Delta P}{2P_0D}.$$
 (4)

Потери мощности ΔP на длине ячейки D складываются из потерь $\Delta_1 P$ на внутренней поверхности волновода $(r=a;\ 0 < z < t;\ t+d < z < D)$, потерь $\Delta_2 P$ на боковых стенках канавки $(a < r < b;\ z=t;\ z=t+d)$ и потерь $\Delta_3 P$ на дне канавки $(r=b;\ t< z< < t+d)$.

Зависимость коэффициента затухания волны HE_{11} от частоты в медном волноводе для различной геометрии диафрагм показана на рис. 2—5. Сплошными линиями показано затухание в диафрагмированном штриховыми — в гладком волноводе. Римские цифры соответствуют номерам волноводов, указанным в табл. 1. При расчете учитывалась нулевая пространственная гармоника, нулевой и первый тип колебаний в области между диафрагмами.

Используя рис. 2—5, можно сравнить затухание волны HE_{11} в диафрагмированном волноводе с затуханием волны H_{11} в круглом волноводе, имеющем такую же критическую частоту.

Как видно из графиков, вблизи $f_{\rm KD}$ затухание диафрагмиро-

Рис. 4.

графиков видно, что уменьшение зывает уменьшение затухания для вона на 12% и для волноводов

 $f_{\kappa p}$ затухание диафрагмированного волновода меньше затухания гладкого волновода. С ростом частоты затухание диафрагмированного волновода растет быстрее, чем затухание гладкого, и на $f=2f_{\kappa p}$ оно превышает затухание гладкого волновода примерно на 25—30%.

На рис. 2 показано изменение коэффициента затухания при варьировании ширины канавки для волноволов с геометрическими размерами, указанными в табл. 1. Увеличение ширины канавки в пределах от 0.3D до 0.7Dприводит к незначительному уменьшению величины затухания. Так, на частоте f ==4 Γ ги для волновода IVкоэффициент затухания а = = 0,0318 ∂б/м и для волновода $V \alpha = 0.0255 \ \partial 6/M$. На частоте f = 5,7 Гги коэффициент затухания для этих же волноводов равен соответственно 0,0199 и 0,0180 дб/м. В рабочем диапазоне частот $(f_{\rm KD}-2f_{\rm KD})$ для волноводов V наблюдается ослабление частотной зависимости коэффициента затухания по сравнению волноводами III, IV.

Влияние глубины канавки на величину коэффициента затухания показано на рис. 3, 4 и 5 для волноводов 10—4-х сантиметрового диапазона соответственно. Из

глубины канавки на 30% вычетырехсантиметрового диападесятисантиметрового диапазона — на 18%. Например, волновод VIII, у которого глубина канавки $\delta=1.7$ мм, на частоте f=12 Γ ец имеет затухание $\alpha=0.0614$ $\partial \delta$ /м, а для волновода IX с глубиной канавки $\delta=1.2$ мм коэффициент затухания на той же частоте равен 0,0495 дб/м.

Глубину канавки в можно варьировать путем изменения размера \ddot{a} при неизменном b или же путем изменения размера b при неизменном а. На рис. 3, 4 можно проследить влияние изменения каждого из размеров a и b на величину затухания. Волновод I имеет глубину канавки $\delta = 3,4$ мм. Уменьшая δ на 1 мм путем увеличения размера а, приходим к волноводу VII, а проделывая то же самое за счет уменьшения размера в, можно получить волновод III с такой же глубиной гофра, что и волновод VII. Из графиков видно, что на частоте f = 3.6 Гги коэффициент затухания волноводов /// и VII равен соответственно 0,0462 и $0.0348 \ \partial 6/м$, а на частоте $f = 5.7 \ \Gamma$ ец затухание убывает до 0,0186 дб/м для волновода III и до 0,0174 дб/м — для волновода VII. Таким образом, в рабочем диапазоне частот волновод VII имеет меньшее затухание по сравнению с волноводом 111. Это говорит о том, что величина затухания более критична к изменению размера а.

Анализируя приведенные графики, можно сделать вывод, что уменьшение коэффициента затухания в диафрагмированном волноводе происходит при увеличении ширины диафрагмы и уменьшении глубины канавки, последнее приводит к более значительному изменению величины затухания.

При учете только нулевого типа колебаний в области между диафрагмами результаты расчета могут отличаться от случая, когда учитывается и первый тип колебаний, почти на 20%. Таким образом, учет только нулевого типа колебаний дает качественную картину, отличающуюся от истинной.

ЛИТЕРАТУРА

- 1. Н. Наћп. Rev Scient. Instrum, 1963, 34, № 10. 2. Г. В. Воскресенский, В. И. Кироза и др. Сб. «Ускорители», вып. 77. Атомиздат, 1967.
- 3. Б. В. Зверев, Н. П. Собенин и др. Сб. «Ускорители», вып. 21. Атомиздат, 1964.
 - 4. Е. С. Коваленко. «Изв. вузов, Радиотехника», № 4, т. VIII, 1965. 5. Р. J. Clarricoats, Р. К. Saha. Electron. Zett, 1970, 6, № 12.
 - 6. Г. В. Кисунько. Электродинамика полых систем. Изд. ВКАС, 1949.