ПАРАМЕТРЫ КРУГЛЫХ ДИАФРАГМИРОВАННЫХ ВОЛНОВОДОВ

М. П. Кухтин, С. В. Дегтярь

Харьков

Исследованию параметров круглых диафрагмированных волноводов посвящено значительное количество работ [1, 2, 3], однако их авторы рассматривают либо симметричную E_{01} -волну, либо волну квази- EH_{11} . В работе [5] был проведен расчет критических частот и затухания квази- HE_{11} волны для различной геометрии диафрагм, однако данная задача решалась в нулевом приближении: полученные результаты дают лишь качественную картину.

В данной работе рассчитываются критические частоты и затухание волны *HE*₁₁ с учетом высших пространственных гармоник и высших типов колебаний в промежутках между диафрагмами.

Расчет параметров данной системы производится методом Фурье [4]. При этом внутренняя полость волновода разбивается на две соосные цилиндрические области с общей границей на поверхности r = a (рис. 1). Электромагнитное поле в этом случае полностью определяется однокомпонентными (параллельными оси z) электрическим и магнитным векторами Герца.

8 2-2028

Как и всякую периодическую структуру, бесконечную в положительном и отрицательном направлении оси *г* гофрированный волновод можно исследовать, применяя теорему Флоке [6]. Согласно этой теореме, любая компонента электромагнитного поля разлагается в ряд Фурье по пространственным гармоникам. Из-за периодичности по азимуту φ собственные волны распадаются на независимые гармоники, отличающиеся различной азимутальной симметрией.

Рис. 1.

Рассмотрим общий случай с n азимутальными вариациями. Поле в приосевой области I (0 < r < a, 0 < z < D) представим в виде бесконечной суммы пространственных гармоник. Выражения для векторов Герца запишутся следующим образом:

$$\Pi_{z}^{e} = \sum_{m=-M}^{M} \sum_{n=0}^{N} A_{mn} ln (x_{m}r) \sin n\varphi e^{l\beta m^{z}};$$

$$\Pi_{z}^{m} = \sum_{m=-M}^{M} \sum_{n=0}^{N} B_{mn} ln (x_{m}r) \cos n\varphi e^{l\beta m^{z}},$$
(1)

где

$$x_m^2 = k^2 - \beta_m^2;$$

$$\beta_m = \beta_0 + \frac{2\pi m}{D}$$

— искомая постоянная распространения; A_{mn}, B_{mn} — постоянные коэффициенты.

Поле в области II (a < r < b, t < z < t + d) естественно искать в виде разложения по стоячим волнам, удовлетворяющим граничным условиям

 $E_r = E_v = 0$ при z = t, z = t + d.

В этом случае выражения для векторов Герца примут вид

$$\Pi_{z}^{e} = \sum_{s=0}^{S} \sum_{n=0}^{N} C_{sn} F_{n}(\rho_{s} r) \sin n\varphi \cos \frac{s\pi}{d} (z-t);$$

$$\Pi_{z}^{m} = \sum_{s=0}^{S} \sum_{n=0}^{N} D_{sn} P_{a}(\rho_{s} r) \cos n\varphi \sin \frac{s\pi}{d} (z-t),$$
(2)

114

$$F_{n}(\rho_{s}r) = In(\rho_{s}r) - \frac{I_{n}(\rho_{s}b)}{N_{n}(\rho_{s}b)} N_{n}(\rho_{s}r);$$

$$P_{n}(\rho_{s}r) = In(\rho_{s}r) - \frac{I'_{n}(\rho_{s}b)}{N'_{n}(\rho_{s}b)} N_{n}(\rho_{s}r);$$

$$\rho_{s}^{2} = k^{2} - \left(\frac{s\pi}{d}\right)^{2} \quad k = \frac{\omega}{c}.$$

Сшивая тангенциальные составляющие полей на границе областей, приходим к бесконечной системе алгебраических уравнений:

$$\sum_{m=-M}^{M} \sum_{s=0}^{S} a_{msl}A_m + \beta_{msl}B_m = 0;$$

$$\sum_{m=-M}^{M} \sum_{s=0}^{S} \bar{a}_{msl}A_m + \bar{\beta}_{msl}B_m = 0,$$
(3)

где

$$\begin{aligned} a_{msl} &= U_{s} \left(\rho_{s}a\right) \frac{2 z_{m}}{d\left(\delta_{s0} \neq 1\right)} \beta_{m} \beta_{\ell} \rho_{s} I'n\left(x_{m}a\right)\left(-1\right)^{m-l} - \delta_{ml} x_{l}^{2} In(x_{l}a) D; \\ \beta_{msl} &= \frac{2 \beta_{l}}{d\left(\delta_{s0} \pm 1\right)} \frac{n}{a} U_{s} \left[\left(\frac{s\pi}{d}\right)^{2} \left(\frac{x_{m}}{\rho_{s}}\right)^{2} - \beta_{m}^{2} \right] In\left(x_{m}a\right)\left(-1\right)^{m-l}; \\ \bar{a}_{msl} &= \frac{2}{d} \frac{n}{a} \left(\frac{s\pi}{d}\right)^{2} \frac{x_{m} \beta_{m}}{\rho_{s}} U_{s} I'n\left(x_{m}a\right)\left(-1\right)^{m-l} - \delta_{ml} \frac{\beta_{l}n}{a} In\left(x_{l}a\right) D; \\ \bar{\beta}_{msl} &= \frac{2}{d} \left(\frac{s\pi}{d}\right)^{2} \left\{ \left(\frac{n}{a}\right)^{2} \frac{1}{\omega \epsilon \rho_{s}} \left[\left(\frac{s\pi}{d}\right)^{2} \left(\frac{x_{m}}{\rho_{s}}\right)^{2} - \beta_{m}^{2} \right] U_{s} - \\ &- x_{m}^{2} \frac{\omega \mu}{\rho_{s}} P_{s} \right\} In\left(x_{m}a\right)\left(-1\right)^{m-l} + \delta_{ml} I'n\left(x_{l}a\right) \omega \omega x_{l} D; \\ \gamma_{s}^{m(l)} &= 2 \frac{\sin \frac{\beta_{m(l)}D + s\pi}{2}}{\beta_{m(l)}^{2} - \left(\frac{s\pi}{d}\right)^{2}}; \\ U_{s} &= \frac{F_{n}\left(\rho_{s}a\right)}{F_{n}\left(\rho_{s}a\right)} \gamma_{s}^{m} \gamma_{s}^{l}; \\ P_{s} &= \frac{P_{n}^{\prime}\left(\rho_{s}a\right)}{P_{n}\left(\rho_{s}a\right)} \gamma_{s}^{m} \gamma_{s}^{l}; \\ \delta_{ml} &= \begin{cases} 0 & m \neq l; \\ 1 & m = l. \end{cases} \end{aligned}$$

Условием существования нетривиального решения этой системы является обращение в нуль детерминанта бесконечной матрицы коэффициентов. Как видно из формулы (3), каждый элемент

115

матрицы представлен в виде бесконечной суммы по типам колебаний в области II (рис. 1).

Дисперсионное уравнение (3) решалось с помощью ЭЦВМ типа М-20. Критические частоты волны HE_{11} в зависимости от числа членов в элементах матрицы для волноводов с размерами, указанными в табл. 1, представлены в табл. 3. Из нее видно, что учет высших пространственных гармоник (m = 1, 2, 3) не влияет существенно на величину критической частоты. Основными при расчете критических частот являются нулевой и первый типы колебаний в области II.

Τ	a	б	л	И	Ц	a	1
	a	U		n	щ	a	

№ волновода	a	Ь	d	t	D
I	25,1	28,5	5,355	2,5725	10,5
II	25,1	27,5	6,3	2,1	10,5
III	25,1	27.5	5,355	2,5725	10.5
IV	25,1	27,5	3,15	3.675	10,5
v	25,1	27,5	7,35	1,575	10,5
VI	25,1	28.1	5,355	2,5725	10,5
VII	26,1	28,5	5,355	2,5725	10,5
VIII	12,5	14.2	2,6553	1,32235	5,3
IX	13,0	14,2	2,6553	1,32235	5,3
·X	12,5	13,7	2,6553	1,32235	5,3
XI	25,5	28.5	5,355	2,5725	10.5

Таблица 2

№ волновода	I	III	IV	v	VI
f _{кр} , Гец	3406,7	3414,3	3468,8	3360,9	3408,8
№ волновода	VII	VIII	IX	X	XI
f _{кр} , Ггц	3286,8	6844,5	6602,0	6859,4	3356,8

Зависимость критической частоты от геометрии системы для случая m = 0, s = 0,1 представлена в табл. 2. Из нее видно, что критическая частота днафрагмированного волновода близка к критической частоте гладкого волновода радиуса r = a, а изменение внешнего радиуса r = b (при неизменном внутреннем радиусе r = a) мало влияет на данный параметр.

При выводе дисперсионного уравнения предполагалось, что стенки диафрагмированного волновода являются идеально проводящими. В гладких волноводах затухание основного типа волны, вызванное омическими потерями, невелико. Однако в диафрагмированных волноводах полное затухание при некоторых соотношениях размеров может стать весьма ощутимым.

Таблица З

s m	0	1	2
0	3502,3903	3502,3875	3502,382
1	3406,7381	3439,632	3445,874
2	3406,7285	3439,638	3445,881

При условии, что потери невелики, коэфициент затухания а запишем в таком виде:

$$\alpha = \frac{\Delta P}{2P_0 D}.$$
 (4)

Потери мощности ΔP на длине ячейки D складываются из потерь $\Delta_1 P$ на внутренней поверхности волновода (r = a; 0 < z < t; t + d < z < D), потерь $\Delta_2 P$ на боковых стенках канавки (a < r < b; z = t; z = t + d) и потерь $\Delta_3 P$ на дне канавки (r = b; t < z < < t + d).

Зависимость коэффициента затухания волны HE_{11} от частоты в медном волноводе для различной геометрии диафрагм показана на рис. 2—5. Сплошными линиями показано затухание в диафрагмированном штриховыми — в гладком волноводе. Римские цифры соответствуют номерам волноводов, указанным в табл. 1. При расчете учитывалась нулевая пространственная гармоника, нулевой и первый тип колебаний в области между диафрагмами. Используя рис. 2—5, можно сравнить затухание волны HE_{11} в диафрагмированном волноводе с затуханием волны H_{11} в круглом волноводе, имеющем такую же критическую частоту.

Как видно из графиков, вблизи *f*кр затухание диафрагмиро-

графиков видно, что уменьшение зывает уменьшение затухания для вона на 12% и для волноводов f_{κ_p} затухание диафрагмированного волновода меньше затухания гладкого волновода. С ростом частоты затухание диафрагмированного волновода растет быстрее, чем затухание гладкого, и на $f = 2f_{\kappa_p}$ оно превышает затухание гладкого волновода примерно на 25—30%.

На рис. 2 показано изменение коэффициента затухания при варьировании ширины канавки для волноводов с геометрическими размерами, указанными в табл. 1. Увеличение ширины канавки в пределах от 0,3D до 0,7Dприводит к незначительному уменьшению величины затухания. Так, на частоте f == = 4 Гги для волновода IV коэффициент затухания а = = 0,0318 дб/м и для волновода $V \alpha = 0,0255 \ \partial 6/m$. На частоте f = 5,7 Гги коэффициент затухания для этих же волноводов равен соответственно 0,0199 и 0,0180 дб/м. В рабочем диапазоне частот $(f_{\rm KD} - 2f_{\rm KD})$ для волноводов II, V наблюдается ослабление частотной зависимости коэффициента затухания по сравнению волноводами С III, IV.

Влияние глубины канавки на величину коэффициента затухания показано на рис. 3, 4 и 5 для волноводов 10—4-х сантиметрового диапазона соответственно. Из

глубины канавки на 30% вычетырехсантиметрового диападесятисантиметрового диапазона - на 18%. Например, волновод VIII, у которого глубина канавки $\delta = 1,7$ мм, на частоте f = 12 Гец имеет затухание $\alpha = 0,0614 \partial 6/M$, а для волновода IX с глубиной канавки $\delta = 1,2$ мм коэффициент затухания на той же частоте равен 0,0495 дб/м.

Глубину канавки δ можно варьировать путем изменения размера а при неизменном b или же путем изменения размера b при неизменном а. На рис. 3, 4 можно проследить влияние изменения каждого из размеров *а* и *b* на величину затухания. Волновод *I* имеет глубину канавки $\delta = 3,4$ мм. Уменьшая δ на 1 мм путем увеличения размера а, приходим к волноводу VII, а проделывая то же самое за счет уменьшения размера b, можно получить волновод III с такой же глубиной гофра, что и волновод VII. Из графиков видно, что на частоте f = 3,6 Гец коэффициент затухания волноводов /// и V// равен соответственно 0,0462 и 0,0348 $\partial 6/m$, а на частоте f = 5,7 Гец затухание убывает до 0,0186 дб/м для волновода /// и до 0,0174 дб/м — для волновода VII. Таким образом, в рабочем диапазоне частот волновод VII имеет меньшее затухание по сравнению с волноводом III. Это говорит о том, что величина затухания более критична к изменению размера а.

Анализируя приведенные графики, можно сделать вывод, что уменьшение коэффициента затухания в диафрагмированном волноводе происходит при увеличении ширины диафрагмы и уменьшении глубины канавки, последнее приводит к более значительному изменению величины затухания.

При учете только нулевого типа колебаний в области между диафрагмами результаты расчета могут отличаться от случая, когда учитывается и первый тип колебаний, почти на 20%. Таким образом, учет только нулевого типа колебаний дает качественную картину, отличающуюся от истинной.

ЛИТЕРАТУРА

1. Н. Наһп. Rev Scient. Instrum, 1963, 34, № 10. 2. Г. В. Воскресенский, В. И. Кирозаидр. Сб. «Ускорители», вып. 77. Атомиздат, 1967.

3. Б. В. Зверев, Н. П. Собенини др. Сб. «Ускорители», вып. 21. Атомиздат, 1964.

4. Е. С. Коваленко. «Изв. вузов, Радиотехника», № 4, т. VIII, 1965. 5. Р. Ј. Clarricoats, Р. К. Saha. Electron. Zett, 1970, 6, № 12.

6. Г. В. Кисунько. Электродинамика полых систем. Изд. ВКАС, 1949.