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Introduction 

The advancement of nanotechnologies is related with the use of metamaterials whose structure 
discreteness and associated resonance phenomena are of primary importance. Interaction between 
electromagnetic radiation and metacrystals at the resonance domain is complicated and insufficient-
ly studied. Methods for electromagnetic simulation of the phenomena in crystal lattices metacrystals 
are developed in order to help studying them. 

The investigations of electromagnetic waves scattering on a plane grating wherein both the 
structural electromagnetic interaction between grating scattering elements and scattering elements 
on their own have resonant properties, are of significant interest in practice.   

The work is aimed to solve in the interconsistent statement the problem of electromagnetic 
waves scattering on a plane grating of identical small inhomogeneous isotropic resonant magnetodi-
electric spheres. In the given problem, a length of the scattered wave can be commensurable with 
constants of the grating, what enables one to take into account the influence of grating structural 
resonances of the electromagnetic interaction between spheres on internal resonances of spheres and 
their fine structure.  

The solution is obtained on the basis of the second type Fredholm integral electromagnetics 
equations [1]. 

We shall use the results of solution of problems considered in [2, 3, 4].  

Statement and solution of the problem  

Consider a plane grating of nodes that is generated in Cartesian co-ordinates by the coordinate 
representation in the view [3]  
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where values d , h  are defined by the conditions 0x  , x d ; 0y  , y h , whereas 0sx  , 

0yt , 0pz   are the coordinates of a node giving birth to the grating and located within a domain (Fig. 1): 
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Co-ordinates ,s tx y  determine positions of nodes outside domain (2) and are functions of co-

ordinates 0 0,s tx y  . It is possible to introduce the time dependence in the coordinate representation, 

when considering coordinates 0 0,s tx y   as some functions of time. Each node confronts with num-
bers ( , )c s t . We shall designate a singled-out grating node as ( , )c s t   , whereas a node within 
domain (2) as ( 0, 0)c s t   . Setting the maximum values for numbers ( , )s t  in (1), we can con-
sider a finite and infinite gratings.   

Variation of node coordinates within domain (2), in accordance with coordinate representation 
(1), will correspondingly affect positions of nodes beyond domain (2), what allows reconstructing 
the spatial configuration of the grating.   
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Fig.1. A plane grating and  
geometry of the problem 

A distance between grating nodes c  and 'c , node c  and an arbitrary point in space   , ,x y z  

looks like (Fig. 1) 

 22
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 22 2( ) .c s tr x x y y z      

Centers of small inhomogeneous resonant magnetodielectric spheres with permittivity , and 
permeability , and radius  are placed in grating (1) nodes. The permittivity and the permeability 
of infilling space outside spheres are 0  and 0 , respectively. 

Let us present the field in the view ( , ) ( ) i tÅ r t Å r e 
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.  

Assume that outside spheres   << 1 and maybe ',d   /h  ~ 1, whereas inside the sphere 

a resonant case / ~ 1ga  , where '  is a wavelength outside the sphere and g  is a wavelength 

within the sphere, is possible.  
A plane electromagnetic wave propagating in the direction of 

z-axis falls on a plane grating. Confine ourselves by consideration 

of a case of wave polarization, when vector  0xE


 is parallel to axis 

0x  (Fig. 1).  
Define the scattered field by the known internal field of scat-
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Assume that the fields of the incident wave   
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with in spheres of the plane grating have respectively the same 

values for all the spheres of the grating.  
The field of the incident wave with regard to the scattering sphere is presented as an infinite 

sum of spatial harmonics [3]  
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Let us write also the internal field in the view of decomposition 
 

0 0

,

0 0

,

( , ) ( , ),

( , ) ( , ),

mn

m n

mn

m n

E r t E r t

H r t H r t

  

  

  

  
                                                  (5) 

which must not be considered as the Fourier decomposition.   

Then the algebraic equations for multipliers of  internal fields   0 ,',mnE r t
 

  0 ,',mnH r t
 

 (5) 

of an arbitrary sphere of the grating take the form [3] 
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Components  0 ,,mnE r t
 

  0 ,mnH r t
 

 of internal fields (5) of singled-out sphere 'c  of the plane 

grating are determined from separate algebraic interconsistent systems of algebraic equations made 
from equations (6), and, as a result, the total internal field of the 'c -th sphere is presented as  
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where mn  is the determinant of the interconsistent system of algebraic equation (6). 
Let us present Hertz potentials of the field scattered by the grating in the form of superposition 

of Hertz potentials of individual spheres of the grating [3] 
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where [2, 3] 
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Quantities ,m n  associated with propagating and attenuating spatial harmonics are defined re-
spectively by the following conditions   
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When using (3), (7), (8), the field scattered on the grating is to be found in the form: 
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where ˆ ˆ,mn mnL P  are functional matrices looking like 
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The field in an arbitrary point in space takes the form 
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where 0 ( , )xE z t


 is the undisturbed field of the incident wave.   
From determinants of the equation systems (6), the resonant conditions are to be found for the 

case when / ~ 1ga   within spheres. If ,   of grating spheres are real, then it is possible to define 
the resonant conditions from the expression  

,det Re 0
ij

m n  , 

when solving it with respect to function  F ka   (9), where ,

ij

m n  is a basic matrix of the sys-

tem of equations (6). 

Conclusions 

In the work, the expressions for the internal fields and fields scattered on grating spheres, 
which take into account the influence of structural and internal resonances of grating spheres on 
each other are obtained. This solution can be useful when developing devices for controlling the ra-
diation fields of electromagnetic radiators.   

The proposed mathematical models will be of help when both developing new kinds of artifi-
cial crystal nanomaterials with resonance properties and studying resonance phenomena in real 
crystals. 
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