СИНТЕЗ ИЗМЕРИТЕЛЬНЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ НА СОСРЕДОТОЧЕННЫХ ЭЛЕМЕНТАХ СВЯЗИ

В. Ю. Лейкин, А. А. Маловичко

Москва

Значительное количество публикаций, посвященных вопросам синтеза коаксиальных направленных ответвителей, характеризует их широкое распространение в технике УКВ и СВЧ.

Среди конструкций коаксиальных ответвителей наиболее простыми в изготовлении и настройке оказываются направленные ответвители петлевого типа. Однако (как показано в ряде работ [1, 2, 3]) протяженность областей связи в ответвителях этого типа составляет около четверти длины волны: именно при таком условии функция передачи оказывается наименее настотнозависимой. Практически реализация четвертьволновой связи приводит к росту размеров ответвителя, а в ряде случаев вызывает значительные конструктивные трудности.

В связи с этим в длинноволновом участке диапазона СВЧ и на УКВ целесообразно применять модифицированные петлевые направленные ответвители, у которых область связи имеет протяженность, значительно меньшую длины волны, и помимо петли содержит в себе емкостный зонд.

Выравнивание частотной характеристики в этом случае, как правило, выполняется с помощью фильтра нижних частот, включительно на выходе вторичной линии.

Индуктивная петля может быть непосредственно опущена в основной канал ответвителя [6, 7] или связана с ним через

ряд поперечных щелей [5, 8].

Ответвители второго типа достаточно разработаны и нашли практическое воплощение в некоторых промышленных приборах [5]. Недостатком такого ответвителя является слабая связь между вторичной и первичной линиями в диапазоне УКВ.

Рис. 1. Ответвитель на сосредоточенных элементах связи.

Рис. 2. Эквивалентная схема ответвителя.

Для ответвителей первого типа приводятся лишь основные выражения, поясняющие принцип его работы и недостаточные для расчета конкретных конструкций [4, 6, 7].

Ниже выведены соотношения для синтеза направленных ответвителей с сосредоточенной связью по заданной функции передачи.

На рис. 1 схематически показан рассматриваемый ответвитель; его эквивалентная схема представлена на рис. 2.

Введенные здесь амплитуды напряжения и тока при соответствующей нормировке полей выражаются следующим образом:

$$U = U_{\text{max}}(1+\Gamma), \tag{1}$$

$$I = \frac{U_{\text{nax}}}{\rho} (1 - \Gamma), \tag{2}$$

где р — волновое сопротивление коаксиальной линии;

 $U_{ ext{пад}}$ — напряжение падающей волны;

 Γ — коэффициент отражения на выходе основного канала.

Коэффициент передачи направленного ответвителя можно записать в следующем виде:

$$S_{\omega} = \left(\frac{P_{\rm H}}{P_{\rm BX}}\right)^{1/2} = \frac{i_{\rm H} \sqrt{R_{\rm H} \rho}}{U_{\rm nag}},\tag{3}$$

103

где $P_{\rm H}$ — мощность и нагрузка вторичной линии;

P_{вх} — мощность волны в основном канале ответвителя:

 $R_{\rm H}$ — сопротивление нагрузки;

i — ток через сопротивление нагрузки вторичной линии. Для нахождения входящих в (3) величин преобразуем эк-

вивалентную схему (рис. 2), используя хорошо известные методы теории цепей. Полученная эквивалентная схема показана на рис. 3.

Здесь приняты следующие обозначения:

$$U_{s} = j\omega U_{\text{max}} \left[\frac{R_{b} C (1+\Gamma)}{1+j\omega R_{b} C} + \frac{M (1-\Gamma)}{\rho} \right], \tag{4}$$

$$Z_{\bullet} = R_{\delta} + j\omega L + \frac{(\omega M)^2}{\rho}, \tag{5}$$

где L — индуктивность петли связи; R_{δ} — балансное сопротивление;

С — емкость связи.

Знаки ± в (4) определяются коэффициентом взаимоиндук-

Рис. 3. Модифицированная эквивалентная схема ответвителя.

ции М и зависят от конструктивного расположения петли связи и направления распространения падающей волны.

Экспериментальное исследование направленных ответвителей, изготовленных в соответствии с эквивалентной схемой рис. 2, показывает весьма незначительную (около 23 дб) направленность устройст-

ва. При этом регулировка размеров и положения петли оказывается недостаточной для получения баланса.

Причиной неудовлетворительной работы конструкции является наличие ряда неучтенных реактивностей, которые необходимо ввести в эквивалентную схему. Так, балансное сопротивление R_{δ} помимо чисто активной имеет и реактивную составляющую; ее можно обозначить L_{δ} и включить в эквивалентную схему рис. 2 последовательно с петлей связи. Компенсация влияния индуктивности L_{δ} позволяет значительно увеличить направленность ответвителя.

С этой целью схему целесообразно дополнить реактивным настроечным элементом, в качестве которого удобно использовать корректирующую емкость C_k , распределенную вдоль со-

противления R_{δ} .

Комплексное балансное сопротивление с учетом сделанных добавлений можно представить следующим выражением:

$$Z_{\delta} = R_{\delta} \frac{1 + j\omega \frac{L_{\delta}}{R_{\delta}}}{1 + j\omega R_{\delta} C_{k} \left(1 + j\omega \frac{L_{\delta}}{R_{\delta}}\right)},$$
 (6)

В этом случае (4) принимает вид

$$U_{s} = j\omega U_{\text{nam}} \left[\frac{\left[1 + \left(\frac{\omega M}{R_{\delta}}\right)^{2}\right] R_{\delta} C (1 + \Gamma)}{1 + j\omega C \left[R_{\delta} (C + C_{k}) - \frac{L_{\delta}}{R_{\delta}}\right] \left[1 + \frac{(\omega L_{\delta})^{2}}{R_{\delta}^{2}}\right]^{\pm} \frac{M (1 - \Gamma)}{\rho}} \right].$$
(7)

Вводим обозначение

$$R_{\delta}C = \frac{M}{\rho} = q \tag{8}$$

и принимаем следующие условия:

$$\left(\frac{\omega L_{\delta}}{R_{\delta}}\right)^{2} < <1, \tag{9}$$

$$R_{\delta}(C+C_{k})=\frac{L_{\delta}}{R_{\delta}}.$$
 (10)

Согласно (6), параметр q равнозначно определяется либо через емкость связи C, либо через коэффициент взаимоиндукции M. Задача настройки ответвителя на максимальную направленность в заданном диапазоне частот сводится к лодбору емкости C_k , обеспечивающей выполнение условия (10).

Как показывает анализ экспериментальных данных, величи-

ну R_{δ} целесообразно выбирать в интервале 50—120 ом.

Увеличение R_{δ} снижает связь по магнитной составляющей поля первичной линии; при малых значениях балансного сопротивления возникают трудности в конструировании корректирующей емкости C_k .

С учетом (8), (9), (10) выражение (7) упрощается:

$$U_{9} = j\omega \, 2q \, U_{\text{nag}} [(1+\Gamma) \pm (1-\Gamma)].$$
 (11)

В зависимости от знака коэффициента взаимоиндукции (11) распадается на два уравнения:

$$U_{\rm s} = j\omega \, 2q \, U_{\rm nag}, \tag{12}$$

$$U_{\rm s} = j\omega \, 2q \, U_{\rm nam} \, \Gamma = j\omega \, 2q \, U_{\rm orp}. \tag{13}$$

Таким образом, при выполнении (8) рассматриваемая эквивалентная схема обеспечивает с точностью до (9) и (10) бесконечную и частотнонезависимую направленность.

Дальнейшие преобразования выполняются при условии на-

стройки ответвителя на падающую волну.

Из эквивалентной схемы рис. З определяется величина тока через сопротивление нагрузки

$$i_{H} = \frac{j_{\omega} 2q U_{\Pi a \pi}}{j_{\omega} \left[C_{H} R_{H} R_{\delta} + C_{H} R_{H} \frac{(\omega M)^{2}}{\rho} + L \right] + R_{\delta} + R_{H}} + \omega^{2} \left(\frac{M^{2}}{\rho} - C_{H} R_{H} L \right)^{2}$$
(14)

где $C_{\rm H}$ — емкость, шунтирующая сопротивление нагрузки вторичной линии.

Подставляя (14) в (3), получаем

$$S_{\omega} = \frac{j\omega 2qV\overline{R_{H}\rho}}{j\omega\left[C_{H}R_{H}R_{\delta} + C_{H}R_{H}\frac{(\omega M)^{2}}{\rho} + L\right] + R_{\delta} + R_{H} + \omega^{2}\left(\frac{M^{2}}{\rho} - C_{H}R_{H}L\right)}$$
(15)

При расчете направленных ответвителей с переходным ослаблением выше $20\ \partial \delta\ (15)$ можно упростить

$$S_{\omega} = \frac{j\omega 2g \sqrt{R_{H}\rho}}{j\omega (L + C_{H}R_{H}R_{\delta}) + R_{\delta} + R_{H} - \omega^{2} C_{H}R_{H}L}.$$
 (16)

Экстремум функции (16) соответствует центральной частоте рабочего диапазона ответвителя

$$\omega_0 = \sqrt{\frac{R_A + R_5}{LC_B K_A}}.$$
 (17)

На центральной частоте коэффициент передачи определяется выражением

$$S_0 = 2q \frac{V \overline{R_H \rho}}{L + C_H R_H R_{\delta}}.$$
 (18)

С учетом (18) модуль коэффициента передачи имеет следующий вид:

$$|S_{\omega}| = S_0 \left\{ 1 + \left[\frac{S_0 (R_{\delta} + R_{H})}{2a\omega} \right]^2 \left[\frac{1 - (\omega/\omega_0)^2]^2}{R_{\omega}a} \right\}^{-1/2}.$$
 (19)

Расчет конструктивных размеров направленного ответвителя производится на центральной частоте рабочего диапазона с помощью выражения (18). Входящие сюда активные сопротивления $R_{\rm H}$, R_{δ} и ρ задаются исходя из конкретных условий 106

работы устройства. Величина нагрузочной емкости $C_{\rm H}$ определяется из (17) с учетом индуктивности прямоугольной петли [5]:

$$L = 4 \left[2\Delta z \ln \frac{8\Delta z b}{d \left(2\Delta z + p \right)} + b \ln \frac{8\Delta z b}{d \left(b + p \right)} - 2 \left(2\Delta z + b - p \right) \right] + 2\Delta z - b, \tag{20}$$

где b, $2\Delta z$ — высота и протяженность петли, $p = [b^2 + (2\Delta z)^{21/2}]$.

Дальнейший расчет сводится к нахождению расстояния h между центральным проводником коаксиальной линии и петлей связи. При фиксированной длине петли $2\Delta z$ величина h определяет коэффициент магнитной связи, который может быть найден методом эквивалентных источников из уравнения

$$\mu_0 \int_{r+h}^{R} \int_{-\Delta z}^{\Delta z} \frac{\partial H}{\partial t} dz dr = j \omega M I_0 \sqrt{\frac{2\pi}{\ln \frac{R}{r}}} \exp(-j \omega t), \qquad (21)$$

где

$$H = I_0 \frac{1 \exp\left[-\frac{j(kz - \omega t)}{V 2\pi \ln R/r}\right]}{V} -$$

нормированная составляющая магнитного поля в коаксиальной линии;

μ₀ — магнитная проницаемость свободного пространства;

R — внутренний диаметр оболочки коаксиальной линии;

r — диаметр центрального проводника.

После интегрирования (21) получаем выражение коэффициента взаимоиндукции через размеры петли

$$M = \frac{\mu_0 \sin(\Delta z k) \ln \frac{R}{r+h}}{\pi k},$$
 (22)

где $\mathbf{k} = \frac{2\pi}{\lambda}$ — постоянная распространения волны ТЕМ в коаксиальной линии.

Теперь из (18) с учетом (8) и (22) легко определяется смещение петли относительно центрального проводника коаксиала.

С целью проверки приведенных соотношений проведен расчет нескольких ответвителей в различных диапазонах частот.

Результаты расчета приведены в табл. 1—3. Здесь же представлены экспериментальные результаты.

$f(\Gamma \iota u)$			0,2		0,3	0,4		0,5	0,6	0,7	0,7 0,		
S_{ω} ($\partial \delta$) pacчетное			. 33,2		32,6	32	,1'	32	32,1	32,4		32,9	
S_{ω} ($\partial \delta$) эксперименталь ное			ь-		34,6	34	34,4	33,7	33,5	33,2		33,7	
Направленность (дб)			32		37	40		42	34	29		27	
-						,				Табл	ии	ца 2	
f (Ггц)		0,5	0,6	0,7	0,8	0, 9	1,0	1,1	1,	2 1	,3	1,4	
S_{ω} (дб) расчетное		30,4	29,6	29,4	29,4	29,4	29,4	29,	8 30	30,5		31,0	
S_{ω} (дб) экспериментальное		30,6	29,8	29	29, 2	29,3	29,4	29,	1 29	,8 3	0,3	30,6	
Направленность (дб)		29	31	33	38	42	36	32	30	2	8	26	
Co The Control of the										Таб	ли	ца З	
f (Ггц)	1,8	1,9	•	2,0	2,1	ı İ	2,2	2,3	2.4	2	,5	2,6	
Sω (∂δ) pасчетное	18,3	18	18 19,		17,7	72 1	7,7	17,80	5 18,	1 18	3,1	18,2	
Sω (дб) эксперимен- тальное	20,5	20,	1	19,7	19,	7 5	20,2	20,0	5 20,	0 20),8	21,1	
Направлен- ность (дб)	30	33		37	42		38	36	33	3	1	28	

Как видно из таблиц, величина направленности изменяется от 27 до 42 $\partial \delta$ в диапазоне 200 — 800 мгц, в полосе 500 — 1400 мгц направленность спадает от 42 $\partial \delta$ на частоте настройки до 25 и 29 $\partial \delta$ по краям диапазона. В высокочастотном варианте ответвителя (табл. 3) направленность не менее 30 $\partial \delta$ в полосе 1,8—2,5 Γ гц.

Экспериментальные величины переходного ослабления с достаточной для практики точностью совпадают к расчетом.

ЛИТЕРАТУРА

1. В. М. Дашенков, Л. Н. Николашина, Ю. К. Сорокин. Расчет и конструирование направленных ответвителей на связанных линиях. «Вопросы радиоэлектроники», сер. VI, 1962, вып. 1.

2. В. А. Сосунов, А. А. Шибаев. Направленные ответвители

сверхвысоких частот. Приволжское кн. изд-во, 1964.

3: И. Г. Рубан. К вопросу расчета и конструирования широкополосных петлевых коаксиальных направленных ответвителей. «Вопросы радиоэлектроники», сер. VI, 1966, вып. 2.

4. И. К. Бондаренко и др. Автоматизация измерений параметров СВЧ трактов. Изд-во «Сов. радио», М., 1969.

- ров СВЧ трактов. Изд-во «Сов. радио», М., 1969.

 5. Автоматизация радиоизмерений под редакцией В. П. Балашова. Изд-во «Сов. радио», М., 1966.

 6. Патент США, кл. 324—95, № 2936417.

 7. Патент США, кл. 324—95, № 2891221.

 8. В. Я. Мальцев, С. И. Айзенварг. Измеритель проходящей мощности для коаксиальных трактов. «Вопросы радиоэлектроники», сер. XII, общетехническая, вып. 3, 1964.