ОБ ЭКВИВАЛЕНТНОЙ СХЕМЕ СВЧ ДИОДОВ

Г. Н. Паулин Новосибирск

При разработке СВЧ детекторных устройств возникает необходимость расчета коэффициента передачи и коэффициента отражения диода. Такие расчеты можно выполнить, зная эквивалентную схему, которая с удовлетворительной точностью отображает частотные свойства диода. В литературных источниках приводится эквивалентная схема диода, включающая в себя индуктивность контактной иглы L, емкость патрона C_0 , нелинейную емкость перехода $C_{\rm n}$, нелинейное сопротивление кристалла Ro. Частотная зависимость характеристик диода объясняется наличием последовательного резонансного контура, состоящего из L и C_n . Однако расчет частотных характери-98

стик диодов Д603, Д604 и Д605 по схеме рис. 1 дает большие расхождения с результатами эксперимента. Например, расчетная добротность резонансного контура для Д603 и Д604 близка к единице, а у Д605 по расчету резонанса вообще не должно быть. В действительности для первых двух диодов добротность равна приблизительно 8, а для последнего — 16. Высокая добротность, получающаяся, при экспериментах, может наблю-

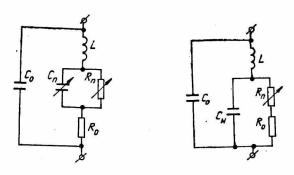


Рис. 1.

Рис. 2.

даться лишь при том условии, что R_0 не входит в последовательную резонансную цепь. Это, в свою очередь, возможно при условии, что в резонансе участвует не емкость перехода, а какая-либо другая емкость.

Таким образом, приходим к эквивалентной схеме, показанной на рис. 2. В ней нет емкости перехода, так как влияние ее на частотные свойства диода, вероятно, мало. В схему введена новая емкость $C_{\mathbf{n}}$; будем трактовать ее как емкость кончика контактной иглы по отношению к металлическому основанию, на котором закреплен кристалл. В резонансе участвуют элементы L и $C_{\mathbf{n}}$. Добротность резонансного контура ограничена сверху потерями мощности в параллельной ветви, состоящей из R_0 и R_n . Влияние R_n следует принимать с учетом реального угла отсечки. Ниже приведены эксперименты, показывающие, что новая эквивалентная схема дает удовлетворительную точность описания частотных свойств диода.

Таблица 1

Тип диода	C_0 , $n\phi$		L, кгн			C_{Π} , $n\phi$	R ₀ , ом	
	И	Л	и	P	Л	P	среднее	разброс
Д603 Д604 Д 605	0,33	0,35	2,65 2,13 2,5	2,27 3,0 2,56	3	0,86 0,38 0,40	28 45 480	23—41 20—90 320—950

Параметры элементов эквивалентной схемы рис. 2 для трех типов диодов приведены в табл. 1. В ней буквами И, Р и Л обозначены соответственно величины, измеренные, рассчитанные и приведенные в литературных источниках. Емкость иглы $C_{\rm u}$ была рассчитана по измеренным значениям резонансной частоты $f_{\rm p}$ и индуктивности иглы.

Частотные свойства диодов определялись путем измерения

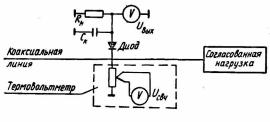


Рис. 3.

их коэффициента передачи k(f) на различных частотах f:

$$k(f) = \frac{U_{\text{BMX}}}{U_{\text{CBY}}},\tag{1}$$

где $U_{\text{вых}}$ — выпрямленное напряжение на выходе диода; $U_{\text{СВЧ}}$ — СВЧ напряжение, приложенное к диоду.

Более удобной величиной является приведенный коэффициент передачи $K_{\rm пp}(f)$, равный отношению k(f) к коэффициенту передачи на низкой частоте k(0):

$$k_{\rm np}(f) = \frac{k(f)}{k(0)};$$
 (2)

k(0) показывает, во сколько раз СВЧ напряжение на переходе больше, чем на диоде. Максимальное значение $K_{\rm np}$ равно

добротности.

Измерение $K_{\rm пp}(f)$ производилось согласно схеме рис. 3. В одном сечении коаксиальной линии, подключенной к согласованной нагрузке, располагались диод и термовольтметр. Диод имел непосредственный контакт с внутренним проводником и контакт через конструктивную емкость $C_{\rm k}$ с внешним проводником линии. Выпрямленное напряжение измерялось на нагрузке $R_{\rm h}$. С помощью термовольтметра, представляющего собой резистор с термопарой, определялось СВЧ напряжение, приложенное к диоду.

Измерение частотной характеристики $K_{\rm np}(f)$ производилось при $U_{\rm вых}={\rm const};$ обеспечивалось также постоянство напряжения СВЧ на переходе диода, благодаря чему исключалось влияние нелинейности $C_{\rm n}$ и $R_{\rm n}$.

Были сняты зависимости $K_{\mathsf{np}}(f)$ для десяти диодов каждоговида.

В табл. 2 приведены средние значения резонансных частот $f_{\rm p}$ и добротность Q, а также их относительные среднеквадратичные отклонения.

Таблица 2

	Резонан	сная частота, f_p	Добротность, Q		
Тип диода	Средняя, Ггц	Среднеквадратич- ное отклонение, %	Средняя	Среднеквадратич ное отклонение, %	
Д603 Д604 Д605	3,32 4,58 5,05	2,3 0,8 2,6	7,7 8,2 16,4	12 13 13	

Чтобы проверить влияние емкости перехода C_n на характеристики диода, были сняты зависимости $K_{np}(f)$ при различных $U_{\text{вых}}$ и по ним определены f_p и Q (табл. 3).

Таблица 3

$U_{\mathtt{BMX}}$	Д603		Д60)4	Д605	
	f _p , Ггц	Q	f _p , Ггц	Q	$f_{ m p}$, Ггц	Q
0,35 0,5 0,7 1,0 1,4 1,5 2,0	3,4 3,45 — 3,5 3,55 3,6	11,3 10 	4,45 4,5 4,525 4,56 4,625 —	10,1 9,55 9,35 9,2 8,65	5,05 5,1 5,125 5,15 5,15 —	11,7 13,2 13,3 14 14,9

При этом использовался тот факт, что выпрямленное напряжение $U_{\text{вых}}$ является одновременно запирающим напряжением, приложенным к переходу, а увеличение запирающего напряжения приводит к уменьшению емкости перехода.

Рассмотрим, в какой степени можно объяснить результаты этих экспериментов с использованием первой и второй эквивалентной схемы.

Сравнивая данные для различных типов диодов (табл. 2), видим, что имеет место обратная зависимость: диод Д605, у которого сопротивление R_0 больше, чем у других типов обладает наибольшей добротностью. По схеме рис. 1 это явление объясняется тем, что R_0 находится в ветви, включенной параллельно C_n .

Выше было показано, что увеличение $U_{\text{вых}}$ приводит к уменьшению C_n . При этом в схеме должна значительно изме-

няться резонансная частота. В действительности $f_{\rm p}$ практически не зависит от $U_{\rm вых}$ (табл. 2). По схеме рис. 1 резонансная частота также не должна зависеть от $U_{\rm выx}$, так как емкость C_n не зависит от $U_{\rm выx}$.

Аналогичным образом с помощью схемы рис. 2 можно объяснить и другие явления.

Отсюда делаем вывод, что общепринятая эквивалентная схема не отражает резонансные свойства диодов Д603, Д604 и Д605; новая эквивалентная схема дает удовлетворительное совпадение частотных характеристик коэффициента передачи с экспериментом и объясняет ряд явлений, необъяснимых с точки зрения прежней схемы.

Можно предполагать, что аналогичная ситуация наблюдается и по отношению к другим СВЧ диодам.

Автор выражает признательность инженеру И. Ф. Матвееву за большой объем выполненной им экспериментальной работы и участие в обсуждении результатов.