ЗАТУХАНИЕ В ГРЕБНЕВЫХ ВОЛНОВОДАХ

М. П. Кухтин

Харьков

Гребневые волноводы (Π - и H-образного поперечного сечения) нашли достаточно широкое применение в современной технике СВЧ. Однако, если вопросу определения критических частот на основном и ближайшем к нему типах волн (а значит, и полосы пропускания) посвящено много работ, то о таком важнейшем параметре, как затухание, имеются лишь очень краткие сведения. Так, в работе [1] приведены приближенные выражения, полученные на основании метода эквивалентных схем, и дан график относительного затухания (в сравнении с затуханием прямоугольного волновода) в зависимости от геометрических размеров. Однако метод эквивалентных схем в применении к гребневым волноводам может считаться справедливым только в случае весьма малых зазоров между гребнями. Кроме того, расчеты произведены лишь для фиксированной частоты $\sqrt{3}f_{кр}$.

Более точные результаты, полученные электродинамическим методом, приведены в работах [2, 3]. Однако расчетные формулы представляют собой только первое приближение, и поэтому дают заниженные величины затухания.

Настоящая работа посвящена определению затухания в гребневых волноводах. Подробно рассматривается случай *H*-образного сечения, из которого *П*-образный и прямоугольный волноводы могут быть получены путем соответствующих предельных переходов.

Рассматривается \hat{H} -волновод с частичным диэлектрическим заполнением в виде пластинки с параметрами диэлектрика ε_i и tg δ , расположенной между гребнями волновода (рис. 1). Электромагнитные поля в этом случае можно представить с помощью продольных составляющих вектора Герца Π_{j}^{m} и Π_{j}^{e} . С учетом

граничных условий на металлических стенках и на линии AB выражения для компонент полей H_z , E_z , H_x , E_x примут такой вид:

Рис. 1. Частично заполненный *H*-образный волновод.

$$H_{x} = \sum_{n=0}^{N} (j\gamma S_{n}A_{n} - jk_{1}p_{a}B_{n}) \cos S_{n} (x+a) \cos p_{n} (y+g) e^{j\gamma z}; \quad (1)$$

 $E_x = \sum_{n=0}^{N} (-j\gamma S_n B_n - jk_i p_a A_n) \sin S_n (x+a) \sin p_a (y+g) e^{j\gamma z};$

область II

$$E_{z} = \sum_{m=0}^{M} \xi_{e_{z}}^{2} \prod_{m} \sin(r_{m}x) \sin q_{m} (y-d) l^{j\gamma z};$$

$$H_{z} = \sum_{m=0}^{M} \xi_{e_{z}}^{2} C_{m} \cos(r_{m}x) \cos q_{m} (y-d) l^{j\gamma z};$$

$$H_{x} = \sum_{m=n}^{M} (-j\gamma r_{m}C_{m} - jk_{2}q_{m}D_{m}) \sin(r_{m}x) \cos q_{m} (y-d) e^{j\gamma z};$$

$$E_{x} = \sum_{m=0}^{M} (j\gamma r_{m}D_{m} - jk_{2}q_{m}C_{m}) \cos(r_{m}x) \sin q_{m} (y-d) e^{j\gamma z},$$
(2)

где

$$S_{n} = \frac{\pi n \Leftrightarrow \frac{\pi}{2}}{(a \Leftrightarrow b)}; \ p_{n}^{2} = \xi_{\varepsilon_{1}}^{2} - S_{n}^{2}; \ \xi_{\varepsilon_{i}}^{2} = k_{i}^{2} - \gamma^{2};$$

$$r_{m} = \frac{\pi m}{b}; \ q_{m}^{2} = \xi_{\varepsilon_{2}}^{2} - r_{m}^{2}; \ k_{i}^{2} = \omega^{2} \varepsilon_{i} \omega_{i}.$$

Используя метод Фурье и сшивая тангенциальные составляющие полей на границе областей I и II (y = 0), получим систему дисперсионных уравнений для волны H_{10} :

$$-\sum_{m=0}^{M}\sum_{n=0}^{N}\left(\frac{2}{l}q_{m}\frac{k_{2}}{k_{1}}\frac{\operatorname{ctg}p_{n}g}{p_{n}}M_{mn}M_{ln}\sin q_{m}d+\delta_{ml}\frac{\xi_{\varepsilon_{2}}^{2}}{\xi_{\varepsilon_{1}}^{2}}\cos q_{l}d\frac{b}{2-\delta_{l0}}\right)C_{m}=0,$$

где

$$M_{in} = \begin{cases} \frac{S_n \cos S_n a}{S_n^2 - r_i^2}; \ S_n \neq r_i; \\ \frac{b}{2} \cos S_n a; \ S_n = r_i; \end{cases}$$

$$\Phi_{in} = \begin{cases} \frac{r_i \cos S_n a}{r_i^2 - S_n^2}; \ S_n \neq r_i \ Q_{mn} = r_m M_{mn} + S_n \frac{\xi_{\epsilon_2}^2}{\xi_{\epsilon_1}^2} \Phi_{mn}, \\ -\frac{b}{2} \sin S_n a; \ S_n = r_i. \end{cases}$$

$$\delta_{ij} = \begin{cases} 1, \ i = j, \\ 0, \ i \neq j. \end{cases}$$

Для нахождения критической длины волны H_{i_0} положим постоянную распространения в продольном направлении γ_z равной пулю.

В таком случае

m = 0 n = 0

$$\sum_{m=0}^{M} \sum_{a=0}^{N} \left(q_{m} \frac{2}{l} \frac{k_{1}}{k_{2}} - \frac{\operatorname{ctg} \rho_{n} g}{\rho_{a}} \sin q_{m} dM_{ma} M_{la} + \delta_{ml} \cos q_{l} d \frac{b}{2 - \delta_{l0}} \right) C_{m} = 0.$$
 (4)

По дисперсионному уравнению (4) были выполнены расчеты на ЭЦВМ типа М-20 в широком интервале вариаций относительных геометрических размеров волновода. Для удобства сравнения с прямоугольным волноводом фиксировались размеры 2l = 23 н 2h = 10 мм. По результатам расчетов предстояло оценить возможности миниатюризации волноводных трактов путем перехода к гребневым волноводам, а также возможности создания гибких конструкций таких систем. В связи с этим определялись параметры полых, полностью и частично заполненных диэлектриком волноводов.

Зависимость критической частоты полого *H*-волновода от отношения $\frac{g}{h}$ для различных $\frac{b}{l}$ (обозначения в соответствии с рис. 1) иллюстрируется в табл. 1. Из нее следует, что увеличение высоты гребней при неизменной высоте волновода 2h приводит к значительному уменьшению критической частоты волны H_{10} и, значит, к уменьшению габаритных размеров *H*-волновода по сравнению с прямоугольным для той же рабочей частоты. Например, для $\frac{g}{h} = 0,1$ и $\frac{b}{l} = 0,5$ ширина волновода уменьшается в три раза (высота также может быть уменьшена до пределов, ограничиваемых электрической прочностью и ростом затухания).

Таблица 1

g/h b/l	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	0,95
0,3	2,669	3,606	4,264	4,779	5,203	5,558	5,860	6,118	6,337	6,433
0,4	2,505	3,402	4,053	4,579	5,024	5,411	5,750	6,046	6,303	6,416
0,5	2,445	3,323	3,965	4,491	4,945	5,345	5,5	6,014	6,287	6,409
0,6	2,447	3,316	3,95	4,480	4,932	5,335	5,694	6,013	6,289	6,411
0,7	2,559	3,424	4,053	4,569	5,015	5,407	5, 75 4	6,056	6,312	6,422

Уменьшение габаритов *H*-волноводов за счет увеличения высоты гребней сталкивается с технологическими трудностями в изготовлении сложной формы поперечного сечения при малом зазоре 2g.

Максимальное уменьшение критической частоты, а значит, и минимальные габариты *H*-волновода получаются, как это видно из табл. 1, при отношении $\frac{b}{L} \approx 0.5$.

Уменьшение габаритов волновода достигается также путем его заполнения диэлектриком. В случае полного заполнения критическая частота уменьшается в $V \bar{\epsilon}$ раз. Однако большинство из

применяемых в настоящее время сверхвысокочастотных диэлектриков с малыми потерями имеет сравнительно небольшую диэлектрическую проницаемость, в связи с чем степень миниатюризации, достигаемая таким способом, невелика.

В связи с потерями в диэлектрике целесообразно рассмотреть частичное диэлектрическое заполнение. Этот случай изучим в связи с исследованием конструкции *Н*-волновода, позволяющей производить изгиб в плоскости *E*. У полого волновода в таком случае происходило бы значительное изменение структуры поля,

а следовательно, и параметров волновода. Диэлектрическая пластинка, введенная между гребнями, будет способствовать сохранению формы поперечного сечения.

В табл. 2 приводятся критические частоты *Н*-волноводов с частичным диэлектрическим заполнением.

Как было указано выше, важнейшим параметром волно-

Т	a	б	Л	И	Ц	a	2
					-		

g/h b/l	0,1	0,3	0,5	0,7	0,9
0,3	2,16	3,27	3,60	4,18	4,42
0,4	2,04	3,15	3,74	4,14	4,41
0,5	2,00	3,11	3,72	4,13	4,41
0,6	2,02	3,15	3,74	4,15	4,42
0,7	2,13	3,24	3,84	4,23	4,45

водного тракта является затухание, приобретающее особое значение также в связи с поставленной нами задачей миниатюризации.

Как известно, затухание в волноводе произвольного сечения при частотах, больших критической, может быть определено по формуле

$$\alpha = \frac{1}{2} \frac{R_s}{\text{Re}} \frac{\int_L |H_{\tau}|^2 dl}{\int_S [EH^*] dS} ,$$

(5)

где

$$R_{s}=\sqrt{\frac{\pi f \mu}{\sigma}}.$$

Подставляя составляющие полей из (1), (2), получим расчетные формулы для нахождения затухания в полом *H*-волноводе. Это затухание было рассчитано для волноводов, геометрические размеры которых приведены в табл. 1. Поскольку выражения для полей представлены в виде разложения в ряд Фурье, исследовался вопрос о степени сходимости при увеличении числа членов разложения. Оказалось, что переход от трех членов разложения к четырем дает различие только в третьем знаке после запятой.

На рис. 2 приведены графики зависимости затухания в полом *H*-волноводе от частоты для ряда значений отношений *g/h* и *b/l*. Как видно из графиков, при малой высоте гребней наблюдается затухание, незначительно отличающееся от затухания прямоугольного волновода и мало изменяющееся с частотой. Увеличение высоты гребней приводит к росту затухания и усилению частотной

зависимости. Наиболее сильный рост затухания и резкая частотная зависимость наблюдаются при малом расстоянии между гребнями.

Полное заполнение волновода диэлектриком добавляет к величине затухания, обусловленного потерями в металле и определяемого на основании формулы (5), затухание в связи с потерями в диэлектрике.

PAC. 2. SATYXAHME B ПОЛОМ *П*-ООРАЗНОМ ВОЛНОВОДС: l - g/h = 0.1, b/l = 0.3; 2 - g/h = 0.1, b/l = 0.5; 3 - g/h = 0.1, b/l = 0.7; 4 - g/h = 0.5, b/l = 0.3; 5 - g/h = 0.5, b/l = 0.7; 7 - g/h = 0.9, b/l = 0.3; 8 - g/h = 0.9, b/l = 0.7.

В предположении диэлектрика с малыми потерями затухание рассчитывается по формуле

$$\alpha_{\mathrm{gr}_{9,\mathrm{f}}} = \frac{k_1 \mathrm{tg}}{2\sqrt{1 - (f_{\mathrm{KP}}/f)^2}},\tag{6}$$

где

$$\kappa_1 = \omega \sqrt{\mu_1 \varepsilon_1}.$$

Суммарное затухание $\alpha = \alpha_{диэл} + \alpha_{мет}$, рассчитанное для полностью заполненных волноводов, с размерами, указанными в табл. 1, показано на рис. 3: позиция *а* соответствует случаю g/h = 0.9, 6 - y/h = 0.3. На рисунке для сравнения приведены кривые затухания полых волноводов, показанные штриховыми линиями.

Из этих графиков следует, что диэлектрическое заполнение увеличивает затухание и усиливает его рост с частотой.

Расчет затухания в *H*-волноводе с частичным диэлектрическим заполнением производился также по формуле (6). Однако в этом случае диэлектрическая проницаемость с диэлектрика заменялась эффективной диэлектрической проницаемостью с_{эфф} среды, запол-

няющей такую же критическую частоту, как и в частично заполненном волноводе. Полученные результаты практически совпали с данными для полностью ваполненных волноводов. Очевидно, это можно объяснить геометрическим расположением пластины в месте наибольшей концентрации электрического поля, поэтому при малом зазоре между гребнями отсутствие диэлектрика в области II незначительно влияет на затухание.

На основании изложенного можно сделать вывод о возможности миниатюризации волноводных трактов в сантиметровом диапазоне посредством перехода к гребневым волноводам. При необходимости такие волноводы могут быть сделаны гибкими, для чего необходимо их частичное либо полное диэлектрическое заполнение (это практически достигается путем металлизации поверхности гибкого диэлектрического стержня Н-образного поперечного сечения). Степень миниатюризации ограничивается величиной проходящей мощности и затуханием, при определении величины которого должна учитываться также и длина волноводного тракта.

ЛИТЕРАТУРА

1. А. Ф. Харвей. Техника сверхвысоких частот, т. І. Изд-во «Советское радио», 1965.

2. В. М. Седых. «Известия вузов, Радиотехника», № 3, 1959. 3. В. М. Седых. Ученые записки ХГУ, т.104. Труды радиофизического факультета, т. 4, 1954.

4. В. М. Седых, А. Ф. Зоркинидр. ЖТФ, 31, 66, 1961.

5. Ю. В. Егоров. Частично заполненные прямоугольные волноводы. Изд-во «Советское радио», 1967.

6. Г. В. Кисунько. Электродинамика полых систем. Изд-во ВКАС, 1949.