ВОЗБУЖДЕНИЕ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ ЭЛЕКТРОННЫМ ПОТОКОМ, ДВИЖУЩИМСЯ ПО СИНУСОИДАЛЬНОЙ ТРАЕКТОРИИ НАД

ДИФРАКЦИОННОЙ РЕШЕТКОЙ

А. И. Цвык, Л. И. Цвык

Харьков

Вопросу об излучении электромагнитных колебаний электронными потоками, движущимися по криволинейным траекториям, посвящено множество теоретических и экспериментальных работ [3—6]. В приборах, работающих на этом принципе, отсутствуют замедляющие системы и единственным носителем периодичности в системе является сам пучок.

В настоящее время актуальным вопросом является исследование дифракционного излучения, возникающего при движении электронных потоков по криволинейным траекториям над проводящими периодическими структурами. Интерес к этим исследованиям определяется возможностью использования дифракционного излучения для генерации волн в миллиметровом, субмиллиметровом и оптическом диапазонах длин волн.

В данной статье в приближении заданного тока решена задача о возбуждении электромагнитных колебаний бесконечно тонким электронным потоком, движущимся по волнообразной траектории над ленточной дифракционной решеткой. Исследованы энергетические и частотные свойства излучения.

1. Постановка задачи. Электромагнитное поле электронного потока

Пусть монохроматический электронный поток с плотностью заряда

$$\rho = \rho_0 \delta \left[z - R_n \cos \left(k_n y + \varphi_0 \right) \right] e^{i(ky - \omega t)} \tag{1}$$

и плотностью тока $J=j_y+k_{j_z}$ движется с постоянной скоростью $v=j\beta c$ вдоль периодической структуры (рисунок). Здесь ρ_0 — амплитуда и ω — частота модуляции пучка; R_n — амплитуда и φ_0 — начальная фаза траектории электронного потока; $k=\frac{\omega}{v}$ и $k_n=\frac{2\pi}{\lambda_n}$ — волновые числа; $\beta=\frac{v}{c}$; c — скорость света; λ_n — длина волны пульсаций траектории; $\delta(z)$ — дельта-функция Дирака; i; j; k — единичные орты прямоугольной системы координат, выбранной таким образом, что ось oz проходит через середину одной из лент решетки. Решетка из металлических полос шири-

ной d с периодом l расположена в плоскости z = -a; образующие полос параллельны к оси ox. Компоненты плотности тока j_y и j_z связаны с плотностью заряда соотношениями

$$j_y = \rho v; (1a)$$

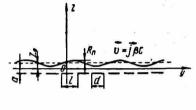
$$j_z = -\rho v R_n k_n \sin(k_n y + \varphi_0). \tag{16}$$

Определим электромагнитное поле системы и энергию дифракционного излучения.

Решение сведем к задаче дифракции «собственного» поля пучка на ленточной решетке. Электромагнитное поле электронного потока легко определим через векторный потенциал Герца

 Π (0; Π_y ; Π_z), удовлетворяющий уравнению Даламбера:

$$\Delta \vec{\Pi} - \frac{\omega^2}{c^2} \vec{\Pi} = \frac{4\pi c}{i\omega} \beta \rho \times \times \left[\vec{j} - \vec{k} R_{\rm n} k_{\rm n} \sin (k_{\rm n} y + \varphi_0) \right].$$
 (2)



Подставив (1) в уравнение (2) и воспользовавшись разложением в ряд по функциям Бесселя

$$e^{\pm ik_z R_{\Pi} \cos(k_{\Pi} y + \varphi_0)} = \sum_{m} (\pm i)^m J_m (k_z R_{\Pi}) e^{\mp im(k_{\Pi} y + \varphi_0)}, \qquad (2a)$$

решение (2) запишем в следующем виде:

$$\vec{\Pi} = \frac{2\pi\beta c}{\omega} \sum_{m} \left\{ (\mp i)^{m} \frac{J_{m} (q_{m}R_{n})}{q_{m}} \left[-\vec{j} \pm \vec{k} \frac{mk_{n}}{q_{m}^{2}} \right] \times \exp \left[i \left(\pm q_{m}z + m\varphi_{0} + k_{m}y \right) \right] \right\}, \tag{3}$$

где $J_m(k_zR_n)$ — функция Бесселя; $k_m=k+mk_n$;

$$q_m = k\Theta_m = k \sqrt{\beta^2 - \left(1 + m \frac{k_n}{k}\right)^2}.$$

Верхний и нижний знаки в соотношениях (3) определяют электромагнитное поле пучка в областях z>0 и z<0 соответственно. Временной множитель вида $e^{-t\omega t}$ здесь и в дальнейшем опускаем.

Воспользовавшись формулами

$$\vec{H} = -i \frac{\omega}{c} \text{ rot } \vec{\Pi}; \vec{E} = \text{grad div } \vec{\Pi} + \left(\frac{\omega}{c}\right)^2 \vec{\Pi},$$

находим электромагнитное поле электронного потока

$$\vec{H}^c = -i2\pi\beta\rho_0 \sum_{m} \{ (\mp i)^m F_m \exp\left[i\left(\pm q_m z + m\varphi_0 + k_m y\right)\right] \}; \tag{4}$$

$$\vec{E}^c = -\frac{2\pi\beta\rho_0}{\omega} \sum_m \left\{ (\mp i)^m F_m \left[\vec{j} (\pm q_m) + \vec{k}k_m \right] \times \exp \left[i (\pm q_m z + m\varphi_0 + k_m y) \right] \right\}, \tag{5}$$

где

$$F_m = J_m \left(q_m R_{\Pi}\right) \left[1 + m \frac{k_{\Pi} \left(k + m k_{\Pi}\right)}{q_m^2}\right].$$

Из соотношений (4), (5) видно, что при условии

$$\beta^2 > \left[1 + m\beta \frac{\lambda}{\lambda_{\Pi}}\right]^2 \tag{6}$$

электронный поток, движущийся по волнообразной траектории, излучает электромагнитные колебания. При заданной скорости пучка β и длине волны пульсаций траектории электронного потока λ_{n} излучение пучка наблюдается на длинах волн

$$\frac{1+\beta}{-m\beta}\lambda_{n} \geqslant \lambda \geqslant \frac{1-\beta}{-m\beta}\lambda_{n},\tag{7}$$

где $m=0; -1; -2; \dots$

Плотность энергии излучения электронным потоком *m*-гармоники вычисляется по формуле

$$S_{m} = \frac{1}{2} \pi \beta^{2} c \rho_{0}^{2} J_{m} \left(q_{m} R_{n} \right) \left[1 + \frac{m k_{n} \left(k + m k_{n} \right)}{q_{m}^{2}} \right]^{2}, \tag{8}$$

а направление излучения энергии определяется углом

$$\gamma_m = \mp \arccos\left(\frac{1}{\beta} + m\frac{\lambda}{\lambda_n}\right).$$
 (8a)

Если условие (6) не выполняется, электромагнитное поле (4), (5) затухает при удалении от траектории электронного потока и принимает следующий вид:

$$\vec{H}_{s}^{c} = \vec{i} 2\pi \beta \rho_{0} \sum_{m_{1}} \left\{ (\pm 1)^{m_{1}+1} \hat{F}_{m_{1}} \exp \left[-\hat{q}_{m_{1}} | z | + i \left(m_{1} \varphi_{0} + k_{m_{1}} y \right) \right] \right\}; \quad (9)$$

$$\vec{E}_{s}^{c} = \frac{2\pi \beta \rho_{0} c}{\omega} \sum_{m_{1}} \left\{ (\pm 1)^{m_{1}+1} \hat{F}_{m_{1}} \left[\vec{j} \left(\mp i \hat{q}_{m_{1}} \right) + \vec{k} k_{m_{1}} \right] \times \right.$$

$$\times \exp \left[-\hat{q}_{m_{1}} | z | + i \left(m_{1} \varphi_{0} + k_{m_{1}} y \right) \right] \right\}; \quad (9a)$$

$$\hat{F}_{m_{1}} = I_{m_{1}} \left(\hat{q}_{m_{1}} R_{\Pi} \right) \left[1 - m_{1} \frac{k_{\Pi} \left(k + m_{1} k_{\Pi} \right)}{\hat{q}_{m_{1}}^{2}} \right], \quad (9a)$$

где

$$\stackrel{\wedge}{q}_{m_1} = \frac{2\pi}{\lambda\beta} \sqrt{\left(1 + m_1\beta \frac{\lambda}{\lambda_n}\right)^2 - \beta^2};$$

 $I_m \left(\!\!\! \begin{array}{c} \wedge \\ q_m R_n \end{array} \!\!\!\! \right)$ — модифицированная функция Бесселя, а суммирование производится по всем индексам m_1 , для которых

$$\beta^2 < \left[1 + m\beta \, \frac{\lambda}{\lambda_{\rm n}}\right]^2. \tag{96}$$

Отметим, что при $R_n = 0$ электронный поток энергии не излучает, а соотношения для полей (9) переходят в выражения для прямолинейного движения электронного потока [1].

2. Электромагнитное поле дифракционного излучения

Для определения излучения, возбуждаемого полем электронного потока на периодической структуре, рассмотрим дифракцию поля (4), (5) на ленточной дифракционной решетке, учитывая, что поле пучка представляет H-поляризованную волну. Электромагнитное поле в областях I(z>-a) и Il(z<-a) запишем в следующем виде:

$$\vec{H}^{1} = \vec{H}^{c} + \vec{i} \sum_{m} \sum_{n} A_{mn} \exp\left[iq_{mn}(z+a) + ik_{mn}y\right]; \tag{10}$$

$$\vec{E}^{1} = \vec{E}^{c} + \sum_{m} \sum_{n} A_{mn} \left[-j \sqrt{1 - \tau_{mn}^{2}} + \vec{k} \tau_{mn} \right] \times \exp \left[iq_{mn} \left(z + a \right) + ik_{mn} y \right]; \tag{11}$$

$$\vec{H}^{II} = \vec{i} \sum_{m} \sum_{n} B_{mn} \exp \left[-i q_{mn} (z+a) + i k_{mn} y \right]; \tag{12}$$

$$\vec{E}^{II} = \sum_{m} \sum_{n} B_{mn} \left[\vec{j} \sqrt{1 - \tau_{mn}^2} + \vec{k} \tau_{mn} \right] \times \exp \left[-iq_{mn} (z + a) + ik_{mn} y \right], \tag{13}$$

где

$$k_{mn} = k + mk_{\Pi} + \frac{2\pi n}{l} = k\beta \tau_{mn}; \ \tau_{mn} = \frac{\gamma + m\kappa_{\Pi} + n}{\kappa};$$
$$q_{mn} = k\Theta_{mn} = k\beta \sqrt{1 - \tau_{mn}^{2}}; \ \kappa_{\Pi} = \frac{l}{\lambda_{\Pi}}; \ \kappa = \frac{l}{\lambda}; \ \gamma = \frac{\kappa}{\beta};$$

 A_{mn} , B_{mn} — неизвестные коэффициенты Фурье.

В формулах (10) — (13) искомое дифрагированное поле представлено в виде сумм по индексам m и n, а первые слагаемые в соотношениях (10) и (11) являются полем m-й гармоники электронного потока. В дальнейшем гармоники дифракционного излучения будем называть mn-ми гармониками.

Из выражений (10) — (13) следует, что возбуждение *mn*-й гармоники дифракционного излучения наблюдается при условии

$$x^2 > [\eta + mx_n + n]^2, \tag{14}$$

где $m=0;\,\pm\,1;\,\pm\,2;\,\ldots;\,n=0;\,\pm\,1;\,\pm\,2;\,\ldots$, причем индексы

т и п одновременно не равняются нулю.

В случае n=0 (m<0) условие (14) переходит в (6), т.е. m0-е дифракционные гармоники возбуждаются излучаемым полем электронного потока. При m=0 и $n\neq0$ условие излучения (14) совпадает с условием, полученным в работе [1], а из неравенства (6) следует, что 0n-е дифракционные гармоники возбуждаются затухающим полем пучка, причем индексы n=-1;-2;-3;...

Неизвестные коэффициенты Фурье A_{mn} и B_{mn} в соотношениях (10) — (13) можно определить, если подчинить поле на одном из периодов решетки точным граничным условиям — тангенциальная составляющая E-поля обращается в нуль на лентах, и все поле непрерывно на щели решетки.

Подчинение поля граничным условиям позволяет отыскать

связь между коэффициентами поля

$$A_{mn} = -B_{mn} - \delta_{0n} 2\pi \beta \rho_0 (i)^m F_m e^{i(m\varphi_0 + q_m a)}$$

$$\tag{15}$$

и приводит к следующей системе функциональных уравнений:

$$\sum_{n} x_{mn} e^{in\varphi} = 0, \qquad \delta \leqslant |\varphi| \leqslant \pi;$$

$$\sum_{n} x_{mn} \frac{|\tau_{mn}|}{\tau_{mn}} (1 - \chi_{mn}) e^{in\varphi} = -G_{m}, \quad |\varphi| < \delta;$$

$$\sum_{n} (-1)^{n} \frac{x_{mn}}{\tau_{n} + m \chi_{n} + n} = 0, \qquad \varphi = \pi,$$
(16)

где δ_{0n} — символ Кронекера;

$$x_{mn} = \tau_{mn} \left(B_{mn} - \delta_{0n} i \frac{\beta}{\Theta_m} G_m \right); \quad \delta = \frac{\pi d}{l}; \quad \varphi = \frac{2\pi}{l} y;$$

$$G_m = -2\pi (i)^{m+1} \rho_0 \Theta_m F_m e^{i(m\varphi_0 + q_m a)};$$

$$\chi_{mn} = 1 + i \frac{|\tau_{mn}|}{\tau_{mn}} \sqrt{\frac{\tau_{mn}}{\eta_{mn} + n + m \tau_{n}}^2 - 1}.$$
(16a)

Известным методом [2] систему уравнений (16) можно свести к решению системы линейных алгебраических уравнений относительно неизвестных x_{mn} :

$$\sum_{-N}^{N} x_{mn} \frac{|n|}{n} \chi_{mn} V_{\sigma_{m}}^{n} + 2C_{1}R_{\sigma_{m}} = G_{m}V_{\sigma_{m}}^{0};$$

$$\sum_{-N}^{N} x_{mn} \left(\frac{|n|}{n} \chi_{mn} V_{p}^{n} - \delta_{pn} \right) + 2C_{1}R_{p} = G_{m}V_{p}^{0},$$
(17)

где $p=0; \pm 1; \pm 2; \ldots; C_1$ — промежуточная постоянная; N — целая часть $\nu_m=\eta+m\varkappa_n=N+\zeta_{mN}; |\zeta_{mN}|<\frac{1}{2}$ — дробная часть ν_m . Коэффициенты V_p^n и R_p приведены в работах [1], [2], а коэффициенты

$$R_{\sigma_m} = \frac{\pi}{2\sin\pi\nu_m} P_{\nu_m-1}(u);$$

$$V_{\sigma_m}^n = \frac{\pi}{2\sin\pi^{\nu_m}} \frac{v_m - 1}{v_m + 1} [P_{v_m - 1}(u) P_{n+1}(u) - P_{v_m - 2}(u) P_n(u)]. \quad (17a)$$

Из (17) находим коэффициенты x_{mn} , а затем по формулам (15) и (16a) — амплитуды дифракционных гармоник A_{mn} и B_{mn} . Если условие излучения (14) выполняется для одной $m\mu$ -й пространственной дифракционной гармоники, то в длинноволновом приближении $\left(l < \frac{\lambda}{2}\right)$ решение системы уравнений (17) можно записать в явном виде:

$$x_{m,-\mu} = G_m \frac{\zeta_{m,-\mu}}{2\gamma_m} \Phi_{m,-\mu},$$
 (18)

где

$$\Phi_{m,-\mu} = \frac{P_{\zeta_m,-\mu}(u) P_{\mu}(u) - P_{-\zeta_m,-\mu}(u) P_{-\mu}(u)}{1 + i \sqrt{\frac{\kappa^2 - \zeta_{m,-\mu}^2 \ln \frac{1+u}{2}}}.$$
 (18a)

Воспользовавшись соотношениями (15), (16а), (18), находим не-известные амплитуды поля

$$B_{m,0} = -2\pi\beta \rho_0 F_m \Phi_{m,0} e^{i\left(m\varphi_0 + \frac{\pi}{2}\right)} e^{iq_m a}, \ m < 0; \tag{19}$$

$$A_{m, 0} = iB_{m, 0} \sqrt{x^2 - v_m^2} \ln \frac{1+u}{2}, m < 0;$$
 (20)

$$A_{m, -\mu} = B_{m, -\mu} = -\frac{\pi \beta \rho_0 \sqrt{\chi^2 - \nu_m^2}}{\eta + m \kappa_{\Pi}} \hat{F}_m \Phi_{m, -\mu} \times$$

$$\times \exp \left\{ - \stackrel{\wedge}{q_m} |a| + i \left[m \varphi_0 + \pi (m+1) \right] \right\}, \quad \mu \neq 0,$$
 (21)

где

$$\Phi_{m, 0} = \Phi_{m, -\mu} |_{\mu=0} = \left[1 + i \sqrt{x^2 - v_m^2} \ln \frac{1+u}{2} \right]^{-1}.$$

Из формул (19)—(21) видно, что амплитуды поля дифракционного излучения прямо пропорциональны функциям Бесселя $J_m\left(q_mR_{\Pi}\right)$ или $J_m\left(\stackrel{\wedge}{q_m}R_{\Pi}\right)$. С увеличением индекса m амплитуды гармоник уменьшаются.

3. Плотность энергии дифракционного излучения. Сопротивление излучения

Энергетической характеристикой излучения является среднее значение потока вектора Умова — Пойнтинга через единичную площадку плоскости z = const. Для mn-й гармоники дифракционного излучения эту энергию можно определить по формулам

$$S_{mn}^{I} = \frac{c}{8\pi} |A_{mn}|^{2}; \tag{22}$$

$$S_{mn}^{11} = \frac{c}{8\pi} |B_{mn}|^2, \qquad (22a)$$

излучение которой направлено под углами

$$\gamma_{mn} = \pm \arccos \frac{\gamma + m x_{\Pi} + n}{x}, \qquad (226)$$

отсчитываемыми против часовой стрелки (z>-a) или по часовой стрелке (z<-a) относительно положительного направления оси oy.

Воспользовавшись (19)—(21), находим

$$S_{m,0}^{I} = S_{m,0}^{II} \left(x^2 - v_m^2 \right) \ln^2 \frac{1+u}{2}, \quad m < 0;$$
 (23)

$$S_{m,0}^{II} = \frac{1}{2} \pi c \rho_0^2 \beta^2 F_m^2 \left[1 + (x^2 - y_m^2) \ln^2 \frac{1+u}{2} \right]^{-1}, \quad m < 0;$$
 (24)

$$S_{m,-\mu}^{I} = S_{m,-\mu}^{I1} = \frac{\pi}{8} c \rho_0^2 \beta^2 \frac{v_m^2 - x^2}{(\eta + m x_{\Pi})^2} \hat{F}_m^2 |\Phi_{m,-\mu}|^2 e^{-2q_m |a|}, \ \mu \neq 0. \ (25)$$

Учитывая, что размерный множитель $\frac{c \varphi_0^2}{8\pi} = \left[1,19 \, \frac{\dot{I_0}\left(\frac{a}{c_M}\right)}{\beta^2}\right] \frac{e_m}{c_M^2}$, формулы (23)—(25) запишем в другом виде

$$S_{m,-\mu}^{I, II} \left(\frac{em}{cM^2} \right) = I_0^2 \left(\frac{a}{cM} \right) R_{m,-\mu}^{I, II} oM,$$
 (26)

где $I_0\left(\frac{a}{cM}\right)$ — линейная плотность тока;

 $R_{m,-\mu}$ (ом) — сопротивление излучения m — μ -й дифракционной гармоники.

Воспользовавшись (23)—(25), находим сопротивление излучения дифракционных гармоник

$$R_{m,0}^{11} = 46,03J_{m}^{2} (q_{m}R_{\pi}) \frac{\left[1 + \frac{x_{\pi} (\eta + mx_{\pi})}{x^{2} - (\eta + mx_{\pi})^{2}} m\right]^{2}}{1 + (x^{2} - y_{m}^{2}) \ln^{2} \frac{1 + u}{2}}, m < 0; \quad (27)$$

$$R_{m,0}^{1} = R_{m,0}^{11} \left[x^{2} - (\eta + m x_{\pi})^{2} \right] \ln^{2} \frac{1+u}{2}, m < 0;$$
 (28)

$$R_{m,-\mu}^{1} = R_{m,-\mu}^{11} = 9.86 \left(1 - \frac{\kappa^{2}}{\gamma_{m}^{2}}\right) \hat{F}_{m}^{2} |\Phi_{m,-\mu}|^{2} e^{-2q_{m}^{2}|a|}, \ \mu \neq 0. \tag{29}$$

Из полученных формул (23)—(27) видно, что мощность дифракционного излучения, возбуждаемая незатухающим полем пучка (23), (24), не зависит от расстояния между осью пучка и дифракционной решеткой. При определенных значениях R_{π} энергия дифракционного излучения m0-гармоник максимальна. Связь оптимальной амплитуды пульсации траектории электронного потока с его скоростью и параметрами дифракционной решетки

$$4\pi R_{\pi, m0}^{\text{ort}} \sqrt{\bar{x}^2 - (\gamma + m x_{\pi})^2} = l \left(\mu_{m, r+1} - \mu_{m, r} \right), \tag{30}$$

где $\mu_{m,r} - r$ -й корень функции Бесселя $J_m(q_m R_n)$.

При длине волны пульсаций траектории электронного потока

$$\lambda_{\Pi} = \frac{-ml}{\frac{l}{\lambda_{\overline{0}}} + n}, \quad m \neq 0 \tag{31}$$

излучение дифракционных гармоник направлено строго по нормали к дифракционной решетке. В частном случае для гармоник вида m0 и 0n сопротивление излучения $\left(\text{при }\gamma_{m,\,n}=\frac{\pi}{2}\right)$ вычисляется с помощью простых соотношений

$$R_{m,0}^{I} = R_{m,0}^{II} x^{2} \ln^{2} \frac{1+u}{2}, \quad m < 0;$$
 (32)

$$R_{m,0}^{11} = 46,03 J_m^2 \left(2\pi \frac{R_n}{\lambda}\right) \left(1 + \kappa^2 \ln^2 \frac{1+u}{2}\right)^{-1}, m < 0;$$
 (33)

$$R_{0,-\mu}^{1, II} = 9,86 (1 - \beta^2) I_0^2 \left(2\pi \frac{R_{\pi}}{\lambda \beta} \sqrt{1 - \beta^2} \right) \left| \stackrel{\wedge}{\Phi}_{0-\mu}^{\perp} \right|^2 e^{-2q_0 |a|};$$

$$\left| \stackrel{\wedge}{\Phi}_{0,-\mu}^{\perp} \right| = \left| \Phi_{m,-\mu} \right|_{\substack{m=0 \\ \eta=\mu}}. \tag{34}$$

В заключение отметим, что при $R_{\pi}=0$ возбуждаются только дифракционные гармоники с индексами m=0 и n<0. В этом случае при $\mu=1$ формулы (21), (25) и (34) совпадают с выражениями, полученными в работе [1].

выводы

- 1. При движении электронного потока по волнообразной траектории над дифракционной решеткой возбуждается дискретный спектр дифракционных гармоник.
- 2. Мощность и длина волны излучения зависят от плотности электронного потока, его скорости, амплитуды и частоты

пульсаций траектории пучка и параметров дифракционной решетки.

3. Направление излучения при фиксированных параметрах х и β не зависит от амплитуды пульсаций траектории и существенно зависит от длины волны пульсаций.

4. Получены аналитические соотношения, позволяющие определить плотность энергии и сопротивление дифракционного излучения.

ЛИТЕРАТУРА

1. О. А. Третьяков, С. С. Третьякова, В. П. Шестопалов. «Радиотехника и электроника», 10, 7, 1965.

2. З. С. Агранович, В. А. Марченко, В. П. Шестопалов.

ЖТФ, 32, 4, 381, 1962.

3. А. В. Гапонов, М. И. Петелин, В. К. Юлпатов. «Изв. вузов, Радиофизика», 10, 9, 1967.

4. R. B. Dyott. Electronic Lett., Febr., vol. 2, p. 70-72, 1966.

5. R. B. Dyott, M. C. Davies. IEEE Trans., March, ED — 13, p. 374—376, 1966.

6. H. Motz. J. Appl. Phys., May, vol. 22, p. 527-535, 1951.