ВЛИЯНИЕ ДИЭЛЕКТРИЧЕСКОГО СЛОЯ НА ВОЗБУЖДАЕМОЕ ИЗЛУЧЕНИЕ В ПЕРИОДИЧЕСКОЙ СТРУКТУРЕ С ПОТЕРЯМИ Л. И. Николаенко, А. И. Цвык Харьков

В статье исследуется вопрос о влиянии диэлектрического слоя на дифракционное излучение, которое возбуждается электронным потоком, движущимся внутри резонансной системы, образованной плоским металлическим экраном и ленточной дифракционной решеткой (периодическая структура нанесена на слой диэлектрика). Такую систему можно рассматривать как модель генератора дифракционного излучения с выводом энергии через полупрозрачный диэлектрический слой. В результате решения электродинамической задачи получены соотношения, позволяющие исследовать энергетические и частотные свойства излучения в зависимости от параметров системы.

Пусть электронный поток с переменной плотностью заряда

$$\rho = \rho_0 \delta(z) \exp\left[i \left(ky - \omega t\right)\right] \tag{1}$$

движется с постоянной скоростью $v = j\beta c$ внутри волновода, образованного плоской дифракционной решеткой и металлическим экраном. Здесь ρ_0 — амплитуда и ω — частота модуляции; c — скорость света; $k = \frac{\omega}{v}$; $\delta(z)$ — дельта-функция; \vec{i} , \vec{j} , \vec{k} — орты прямоугольной системы координат.

Решетка из металлических полос шириной d и периодом l расположена в плоскости z = -a; образующие полос параллельны оси *ох* и нанесены на слой изотропного диэлектрика произвольной толщины $d_1 = \delta - a$. Металлический экран с проводимостью σ находится в плоскости z = h - a = b.

Рассматривая дифракцию собственного поля электронного пучка на решетке, электромагнитное поле в волноводе (1 область, -a < z < b), внутри диэлектрического слоя (11 область, $-\delta < z < -a$) и вне волновода (111 область, $z < -\delta$) запишем в следующем виде:

$$\vec{H}^{1} = \vec{H}_{c} + \vec{i} \sum_{n} \left\{ A_{n} e^{iq_{n}(z+a)} + B_{n} e^{-iq_{n}(z-b)} \right\} e^{ik_{n}y};$$
⁽²⁾

$$\vec{H}^{II} = \vec{i} \sum_{n} \left\{ C_n e^{-iq_{n2}(z+a)} + D_n e^{iq_{n2}(z+b)} \right\} e^{ik_n y};$$
(3)

$$\vec{H}^{\text{III}} = \vec{i} \sum_{n} F_{n} e^{-iq_{n}(z+\delta)} e^{ik_{n}y}; \qquad (4)$$

$$\vec{E}^{1} = \vec{E}_{c} + \sum_{n} \{ \left[-\frac{1}{j} \sqrt{1 - \tau_{n}^{2}} + \vec{k} \tau_{n} \right] A_{n} e^{iq_{n}(z+a)} + \left[\frac{1}{j} \sqrt{1 - \tau_{n}^{2}} + \frac{1}{j} \right] e^{-iq_{n}(z+a)} + \left[\frac{1}{j} \sqrt{1 - \tau_{n}^{2}} + \frac{1}{j} \right] e^{-iq_{n}(z+a)} + \left[\frac{1}{j} \sqrt{1 - \tau_{n}^{2}} + \frac{1}{j} \right] e^{-iq_{n}(z+a)} + \left[\frac{1}{j} \sqrt{1 - \tau_{n}^{2}} + \frac{1}{j} \right] e^{-iq_{n}(z+a)} + \left[\frac{1}{j} \sqrt{1 - \tau_{n}^{2}} + \frac{1}{j} \right] e^{-iq_{n}(z+a)} + \left[\frac{1}{j} \sqrt{1 - \tau_{n}^{2}} + \frac{1}{j} \sqrt{1 - \tau_{n}^{2}} + \frac{1}{j} \sqrt{1 - \tau_{n}^{2}} + \frac{1}{j} \sqrt{1 - \tau_{n}^{2}} \right] e^{-iq_{n}(z+a)} + \left[\frac{1}{j} \sqrt{1 - \tau_{n}^{2}} + \frac{1}{j} \sqrt{1 - \tau_{n}^{2}} +$$

$$+ \left[j V_{1-\tau_{n}^{2}+k\tau_{n}} \right] B_{n} e^{-iq_{n2}(z-b)} \Big\} e^{ik_{n}y};$$
(5)

$$\dot{E}^{II} = \sum_{n} \left[\left[j \frac{V \varepsilon - \tau_n^2}{\varepsilon} + \vec{k} \frac{\tau_n}{\varepsilon} \right] C_n e^{-q_n 2(z+a)} + \right]$$

$$+\left[-\frac{1}{j}\frac{\sqrt{\varepsilon-\tau_n^2}}{\varepsilon}+k\frac{\tau_n}{\varepsilon}\right]D_n e^{iq_{n2}(z+\delta)}\bigg\}e^{ik_n y};$$
(6)

$$\vec{E}^{III} = \sum_{n} \left[\vec{j} \, \sqrt{1 - \tau_n^2} + \vec{k} \, \tau_n \right] F_n e^{-iq_{n2}(z+\delta)} e^{ik_n y}, \tag{7}$$

где введены следующие обозначения:

$$\vec{H}_{c} = i\beta F \operatorname{sign} z e^{-q|z|} e^{iky};$$

$$\vec{E}_{c} = \left[-\overline{j}i\theta + \overline{k}\operatorname{sign} z\right] F e^{-q|z|} e^{iky} -$$
(8)

собственное поле пучка, $F = 2\pi\rho_0$; $q = -iq_0$; $\eta = \frac{\kappa}{\beta}$; $\kappa = \frac{l}{\lambda}$; $\lambda = \frac{2\pi c}{\omega}$; $k_n = k + \frac{2\pi n}{l}$;

$$q_n = k\theta_n = k\beta \sqrt{1 - \tau_a^2}; \quad q_{n2} = k\theta_{n2} = k\beta \sqrt{\varepsilon - \tau_a^2}. \tag{9}$$

Полное электромагнитное поле, записанное в виде рядов (2)—(7), представляет собой суперпозицию распространяющихся и затухающих гармоник.

Коэффициенты Фурье A_n , B_n , C_n , D_n , F_n можно найти, подчиняя поле на одном из периодов решетки (z = -a) и в плоскости $z = -\delta$ точным граничным условиям и граничным условиям Леонтовича на металлическом экране

$$E_y^{\mathrm{I}} = -\xi H_x^{\mathrm{I}},$$

где $\xi = (1-i) \sqrt{\frac{\omega}{8\pi\sigma}}; \sigma$ — проводимость материала экрана. Подчинение поля граничным условиям позволяет отыскать связь между коэфрициентами Фурье

$$A_{n} = B_{n}e^{-iq_{n}h}\frac{\theta_{n}+\xi\beta}{\theta_{n}-\xi\beta} - \delta_{0}^{n}F\beta e^{qa};$$

$$C_{n} = \frac{1}{2}V_{n}F_{n}; D_{n} = \frac{1}{2}\overline{V}_{n}F_{n}e^{iq_{n}2(-\delta+a)};$$

$$B_{n} = \frac{\theta_{n}-\xi\beta}{\theta_{n}\left(e^{iq_{n}h}-e^{-iq_{n}h}\right)-\xi\beta\left(e^{iq_{n}h}+e^{-iq_{n}h}\right)}\left\{\frac{\theta_{n2}}{\epsilon\theta_{n}}\left(1-\frac{\overline{V}_{n}}{\overline{V}_{n}}\right)C_{n}-\delta_{0}^{n}F\beta\left(e^{qa}-e^{-qa}\right)\right\}$$
(10)

получить следующую систему функциональных уравнений:

$$\sum_{n} x_{n} e^{in\varphi} = 0, \ \delta_{1} \leqslant |\varphi| \leqslant \pi;$$
(11)

$$\sum_{n} x_{n} \frac{|n|}{n} (1 - \chi_{n}) e^{in\varphi} = -G; |\varphi| < \delta_{1};$$
(12)

$$\sum_{n} x_n \frac{(-1)^n}{\eta + n} = 0,$$
(13)

где δ_0^n — символ Кронекера, $\varphi = \frac{2\pi y}{l}$; $\delta_1 = \frac{\pi d}{l}$;

$$\begin{split} \chi_{n} &= 1 + i \frac{|n|}{n} \frac{\sqrt{1 - \tau_{n}^{2}}}{\tau_{n}}; \quad f_{n} = \frac{\overline{V}_{n}}{\overline{V}_{n}}; \\ G &= -2\pi \theta \frac{1 + \epsilon}{W_{0}'} P; \quad W_{n}' = \frac{\epsilon \theta_{n}}{\theta_{n2}} \frac{1 + f_{n}}{1 - f_{n}} + \Delta_{n}; \\ P &= -\frac{1}{2} \left\{ (\Delta_{0} - 1) e^{2qa} - (1 + \Delta_{0}) \right\}; \quad W_{n} = \frac{\theta_{n2}}{\epsilon \theta_{n}} W_{n}'; \\ \Delta_{n} &= \frac{\theta_{n}}{\theta_{n}} \frac{(1 + e^{2iq_{n}h}) + \xi\beta \left(1 - e^{2iq_{n}h}\right)}{\theta_{n} \left(1 - e^{2iq_{n}h}\right) + \xi\beta \left(1 + e^{2iq_{n}h}\right)}; \\ x_{n} &= \frac{\tau_{n} W_{n}}{4\rho_{0}} e^{qa} \left\{ (V_{n} - \overline{V}_{n}) F_{n} + \delta_{0}^{n} 4\beta F e^{-qa} \frac{P}{W_{0}} \right\}; \\ V_{n} &= \left(1 + \frac{\epsilon \theta_{n}}{\theta_{n2}}\right) e^{iq_{n2}(-\delta + a)}; \quad \overline{V}_{n} = \left(1 - \frac{\epsilon \theta_{n}}{\theta_{n2}}\right) e^{-iq_{n2}(-\delta + a)}, \end{split}$$

Таким образом, задача об излучении электронного пучка свелась к краевой задаче Римана — Гильберта, решение которой можно записать в виде системы линейных алгебраических уравнений относительно неизвестных x_n [1]:

$$\sum_{n} x_{n} \frac{|n|}{n} \chi_{n} V_{\sigma}^{n} + 2CR_{\sigma} = GV_{\sigma}^{0};$$

$$\sum_{n} x_{n} \left(\frac{|n|}{n} \chi_{n} V_{m}^{n} - \delta_{m}^{n} \right) + 2CR_{m} = GV_{m}^{0}.$$
(15)

 $(m = 0; \pm 1; \ldots; C -$ промежуточная постоянная). Коэффициенты $V_{\circ}^{n}; R_{\circ}; V_{m}^{n}; R_{m}$ приведены в работах [1, 2].

Из (15) находим коэффициенты x_n , а затем по формулам (10)—(14) амплитуды пространственных гармоник A_n ; B_n ; C_n ; D_n ; F_n .

Из соотношений (2)—(7) следует, что дифракционное излучение, возбуждаемое электронным пучком, возможно при вещественных значениях q_n и q_{n2} , т. е. при

$$\tau_n^2 < 1; \quad \varepsilon > \tau_n^2. \tag{16}$$

Выбором соотношений между диэлектрической проницаемостью є, скоростью пучка β и параметром х можно добиться излучения только внутрь диэлектрика или в свободное пространство $z < -\delta$.

Энергетической характеристикой излучения является среднее значение вектора Пойнтинга через единичную площадку z = const. Угол излучения энергии в волновод и из волновода, отсчитываемый относительно положительного направления *оу*, определяется соотношениями

$$\cos \gamma_n = \tau_n; \quad \cos \gamma_{n2} = \frac{\tau_n}{\varepsilon}. \tag{17}$$

Величину излучаемой мощности в диэлектрик и в область *z* < - δ находим по формулам

$$S_n^{11} = \frac{c}{8\pi V \varepsilon} |C_n|^2; \tag{18}$$

$$S_n^{III} = \frac{c}{8\pi} |F_n|^2.$$
(19)

Воспользовавшись соотношениями (18), (19), введем коэффициент прохождения электромагнитной энергии через диэлектрический слой

$$T_{n} = \frac{S_{n}^{111}}{S_{n}^{11}} = \frac{4 \sqrt{\varepsilon}}{|V_{n}|^{2}}.$$
 (20)

В общем случае, учитывая потери в диэлектрике ($\varepsilon = \varepsilon' + i\varepsilon''$) и воспользовавшись (14), после некоторых преобразований для коэффициента T_n имеем

$$T_n = 4 \sqrt{(\epsilon')^2 + (\epsilon'')^2} \left| \frac{\theta_{n2}}{\theta_{n2} + \epsilon \theta_n} \right|^2 e^{-2q_{n2}'(\delta - a)} \cos \psi, \qquad (21)$$

где

$$q_{n^2} = \frac{2\pi}{l} \sqrt{\left[\varepsilon' x^2 - (\eta + n)^2\right]^2 + \left(\varepsilon'' \overline{x^2}\right)^2} \sin \frac{\varphi_n}{2};$$

 $\varphi_n = \arctan \frac{\varepsilon' x^2}{\varepsilon' x^2 - (\eta + n)^2}$ — угол электрических потерь гармоник дифракционного излучения;

 $\psi = rctgrac{arepsilon'}{arepsilon'}$ — угол электрических потерь, заключенный в интер-

вале
$$0 < \psi < \frac{\pi}{2}$$
.

Из соотношения (21) видно, что коэффициент прохождения дифракционного излучения зависит от параметров периодической структуры, электронного пучка и величины диэлектрической проницаемости. Максимальному значению T_n соответствуют диэлектрики с минимальными потерями (в этом случае $\varphi_n \simeq 0$, $\psi \simeq 0$).

Из (21) легко определить толщину диэлектрика, при котором поле дифракционного излучения затухает в *е* раз:

$$\delta = \frac{l}{2\pi \sin \frac{\varphi_n}{2}} \{ [\varepsilon' x^2 - (\eta + n)^2]^2 + (\varepsilon'' x^2)^2 \}^{-\frac{1}{2}}.$$
 (22)

Наибольший интерес представляет излучение нулевой и минус первой гармоник. В этом случае из системы уравнений (15) находим

$$F_{0} = -\frac{8\pi\rho_{0}\beta P e^{-qa}}{W_{0} + i\frac{1+\epsilon}{\epsilon}\theta_{02}\eta\ln\frac{1+u}{2}};$$
(23)

$$F_{-1} = -4\pi\theta\rho_{0}\beta P e^{-qa} \frac{1+\epsilon}{W_{0}'} \frac{1}{V_{-1} - \overline{V}_{-1}} \frac{u - 1 + \zeta (1+u) \ln \frac{1+u}{2}}{W_{-1} + i \frac{1+\epsilon}{\epsilon} \sqrt{\epsilon x^{2} - \zeta^{2}} \ln \frac{1+u}{2}}; \quad (24)$$

$$C_0 = \frac{\theta_{02} + i\varepsilon\theta}{2\theta_{02}} F_0 e^{-iq_{02}(\delta - a)};$$
(25)

$$C_{-1} = \frac{\theta_{-12} + \varepsilon \theta_{-1}}{2\theta_{-12}} F_{-1} \bar{e}^{iq} - \frac{1}{2} (\delta - a).$$
(26)

Отметим, что в случае $\varepsilon = 1$ и $\delta = a$ (диэлектрический слой отсутствует) формула (23) переходит в соотношение, полученное в работе [2].

На рис. 1 приведены графики зависимостей относительной мощности излучения $\left| \frac{C_{-1}^0}{C_{-1}^{\epsilon}} \right|^2$ от диэлектрической проницаемости подложки (в случае изотропного диэлектрика без потерь и $\zeta = 0$). Здесь $C_{-1}^0 = \frac{1}{\rho_0} C_{-1}^{\epsilon=1} -$ амплитуда поля дифракционного излучения минус первой гармоники

при $\varepsilon = 1$; $\delta = a$ [2]; $C_{-1}^{\varepsilon} = \frac{1}{\frac{4}{\rho_0 \sqrt{\varepsilon}}} C_{-1}$. Из графиков следует, что при

определенных параметрах системы существует оптимальное значение $\varepsilon_{\kappa p}$, при которых в диэлектрик излучается максимальная мощность. Величина $\varepsilon_{\kappa p}$ зависит от параметров системы и электронного потока. Так, при $\beta = 0,1$ и

 $\frac{h}{l} = 3,5 \ \varepsilon_{\rm Kp} = 2, \ {\rm B}$ то же время при $\beta = 0,1$ и $\frac{h}{l} = 252,5 \ \varepsilon_{\rm Kp} = 3,$ (рис. 1, *a*), т. е. изменение величины диэлектрической проницаемости меняет оптимальное значение $\frac{h}{l}$, при котором в диэлектрик излучение

максимально. Кроме того, диэлектрическая проницаемость подложки значительно влияет на уровень излучаемой мощности. Для всех значений $\varepsilon < \varepsilon_{\rm kp}$ излучение в диэлектрик увеличивается с возрастанием диэлектрической проницаемости до оптимального значения $\varepsilon = \varepsilon_{\rm kp}$ и значительно превышает уровень мощности в случае $\varepsilon = 1$ [3]. При $\varepsilon > \varepsilon_{\rm kp}$ излучение уменьшается с увеличением ε и для значений $\varepsilon \gg \varepsilon_{\rm kp}$ мощность излучения минус первой гармоники во много раз меньше, чем для $\varepsilon = 1$.

На рис. 2 приведена зависимость С-11² от длины волны дифракци. излучения при различных онного значениях є. Из графиков следует, что диэлектрическая проницаемость влияет на длину излучаемой волны, при которой наблюдается оптимальное излучение. Так, при $\varepsilon = 1$ [3] для x = 0,101 излучаемая мощность системы в диапазоне ИЗ 0,101 < x< 0,102 минимальна, в то же время для $\varepsilon = \varepsilon_{\kappa p} = 2$ (рис. 2, а) при $\varkappa =$ = 0,101наблюдается оптимальное излучение. С увеличением диэлектри-

ческой проницаемости уровень дифракционного излучения падает и излучение наблюдается на других резонансных частотах (рис. 2, 6; 2, в). Следовательно, диэлектрическая проницаемость подложки и ее толщина существенным образом влияют на коэффициент заполнения решетки, на оптимальную величину мощности излучения и на частотные свойства исследуемой системы. Эти замечания необходимо учитывать при конструировании приборов дифракционной электроники.

ЛИТЕРАТУРА

1. З. С. Агранович, В. А. Марченко, В. П. Шестопалов. ЖТФ, 32, 4, 381, 1962.

2. О. А. Третьяков, А. И. Цвык, Э. И. Черняков. Возбуждение дифракционного излучения в периодической структуре с потерями. Сб. «Радиотехника», вып. 7. Изд-во ХГУ, Харьков, 1968.

3. Л. И. Николаенко, А. И. Цвык. Возбуждение дифракционного излучения в периодической структуре с потерями. Сб. «Радиотехника», вып. 10. Изд-во ХГУ, Харьков, 1969.