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Introduction 

Suppose some parties, A and B, use some symmetrical encryption algorithm (for example, 

AES) to encrypt their messages from A to B and from B to A. They get their secret keys from some 

Trusted Authority (TA). TA generates keys and then delivers them to correspondent users. The 

simplest and, may be, the optimal way to deliver the secret key to user A is to encrypt it (using 

some asymmetrical encryption algorithm) with A’s public key and then to send it to A via public 

channel. Such procedure is called “key encapsulation”. 

Key encapsulation algorithms are widely used in the modern cryptography and represented in 

national and ISO/IEC standards of key encapsulations [1, 2].Building the key encapsulation algo-

rithm [3], which may be used as a national standard, is an actual problem nowadays. Ukrainian 

cryptographers are also working on such standard [4]. Modified Elliptic Curve Integrated Encryp-

tion Scheme (ECIES), included in the ANSI X9.63, ISO/IEC 18033-2, IEEE 1363a and SECG 

SEC1 standards, was used in the project of national standard for key encryption. 

In this article we discuss some alternative encryption algorithm on elliptic curve which also 

may be used for this purpose. 

Generally speaking, we can use arbitrary asymmetric encryption algorithm for key encapsula-

tion. One of the simplest and preferable algorithms is ElGamal encryption algorithm [5]. To use this 

algorithm on elliptic curve, we need algorithms for embedding key into point on elliptic curve and 

for retrieving it back. Several lines of work in both the number theory and cryptography literature 

have considered the problem of deterministically mapping field element to point on elliptic curve. 

However, only probabilistic algorithms of such embedding existed until 2016, when deterministic 

algorithm for hash embedding was proposed in [6]. But key embedding is much more complicated 

procedure than hash embedding. 

In what follows we describe how this algorithm for key embedding can be built and then dis-

cuss the problems that appear if we want to use it in key encapsulation. 

To formalize our problem, we need the next designations. 

Let  pE F be an elliptic curve over pF  given with the equation 

2: ( ),E y g x  where 3( ) , , , 0.pg x x ax b a b F ab      

We assume that key length is n and for some large prime p
 
we have 2np  . In this case we can 

consider vector k   as binary representation of some element pk F . 

Our purpose is to build mapping  p pF E F , which maps each element pk F  into corre-

spondent point  k pP E F . Moreover, such mapping should be invertible for key retrieving from the 

point. 

1. Classical ElGamal cryptosystem and its elliptic analogue 

Classical ElGamal public-key encryption scheme was built in multiplicative group pF   for 

large prime p . Its security is based on the intractability of the discrete logarithm problem [7,8]. To 

understand the problem of key embedding into the elliptic curve point let us describe the basic 

ElGamal and Elliptic Curve ElGamal encryption schemes. 

Let p  be large prime, g  be a generator of pF  . 

Also suppose that party A has his private key a , 2 2a p   , and correspondent public key 

modah g p . 
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Assume TA generates key k  (for example, for AES encryption) and should deliver it to parties 

A and B using only public channels. Suppose TA uses classical ElGamal algorithm (in pF  ) to en-

crypt the key k . In this case it does the next steps. 

Algorithm 1. 

Classical ElGamal algorithm (key encryption) 

1. Generates random r , 2 2r p   . 

2. Evaluates 1 modrC g p . 

3. Evaluates modrR h p . 

4. Evaluates 2 modC k R p  . 

5. Forms ciphertext  1 2,C C C  and sends it to A. 

Then TA does the same procedure for user B, using B’s private key. 

When A obtains ciphertext  1 2,C C C  he decrypts it and finds key k , using secret key a , as 

1 2 modak C C p  . User B do the same with correspondent cipher text and his secret key. 

These scheme can be easily transformed to correspondent elliptic analogue, but there exist 

some nuances. For example, we may mention Koblitz paper [9] where this analogue was firstly 

proposed. But the bottleneck of correspondent elliptic algorithm is the step 4 in Algorithm 1: we 

need k  to be some point on elliptic curve. The remaining steps of the algorithm are directly trans-

ferred to elliptic case. 

Let for large prime p the base point P of elliptic curve (EC)
 

 pE F  has order n. Party A has his 

private key a , 2 2a n   , and correspondent public key G aP . TA generates key k  and should 

deliver it to parties A and B using only public channels. Suppose TA uses ElGamal algorithm in 

over  pE F  to encrypt the key k  embedded into point on elliptic curve K . In this case it does the 

next steps. 

Algorithm 2. 

EC ElGamal algorithm (key encryption) 

1. Generates random r , 2 2r n   . 

2. Evaluates 1C rP .  

3. Evaluates rGKC 2
. 

4. Forms ciphertext  1 2,C C C  and send it to A. 

Then TA does the same procedure for user B, using B’s private key. 

A obtains cipher text   1 2,C C C and decrypts it using secret key a , as 2 1K C aC  . User B do 

the same with correspondent cipher text and his secret key. 

To solve the problem of embedding key into point on elliptic curve and retrieving it, Koblitz in 

[9] proposed some probabilistic algorithm of embedding k  into elliptic curve point. But usage of 

such algorithm makes system very complicated and inconvenient. That is why elliptic analogue of 

ElGamal algorithm is not used in practice till nowadays. 

In the next paragraph we will build deterministic algorithm for key embedding into elliptic 

curve point. We also describe the inverse algorithm, i.e. the algorithm of retrieve key from elliptic 

curve point and proof the correctness of these algorithms. 

2. Embedding algorithm justification 

To build key embedding algorithm, we use the algorithm of hash imbedding into elliptic curve 

point, which was recently proposed by Boneh and others in [6]. We firstly describe the Boneh’s al-

gorithm and then explain how we can modify it for our purposes. Note that in our case we should be 

able not only to embed the key into point on the curve, but also to reveal it univocally after decryp-

tion. 
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Let for some    pF   we have   pQ   (i.e.   is quadratic non-residue in pF , pQ is the set of all 

quadratic residues in pF ). Then for key   pF   set  2  ku k  . Note that ku  is also quadratic non-

residue in pF , or another words  k pu Q . Note that we should exclude case 1ku   , which may hap-

pened with negligible probability (only if 1 pQ   and 2 1mod modk p p   ). 

Now find the value kx  such that the next equation holds: 

   3
k k k kg u x u g x .                              (1) 

The equation (1) is equivalent to the equation 

   3 3 3
k k k k k k ku x au x b u x ax b     , 

from where we obtain 

    
1

3 21 1k k k kx b u au u


   .                                             (2) 

The equality (2) can be simplified as 
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For such kx  we have 

       

        

3

3 22 23 2 3
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g x u g x k g x k  

 

  
 

i.e.    k k kg x g u x is a quadratic non-residue in pF .It means that exactly one of the next two ele-

ments,  kg x  or  k kg u x , is a quadratic residue in pF , and the other is non-residue. 

If  k pg x Q  then redefine k k kx u x .In this case to retrieve we use the equation  

2

1
1k

k k k

x b

u a u u

 
      

 (4) 

instead of (3). 

Hence we have  k pg x Q , so there exist two square roots from  kg x  in pF , 
 

)(2,1 kxgy  . Note that one of 
1,2

y
 
 has least significant bit equal to 0 (i.e. 0lsb  ), and other has 

1lsb  . We can chose any of these two roots according to some predefined rule, for example, with 

0lsb   and define 
1k

y y , if  
1

0lsb y  , and 
2k

y y , else. Therefore the point    ,k k k pP x y E F , 

correspondent to field element pk F  , was constructed and actually the mapping  p pF E F  

wasconstructed which implies that for any key pk F   there exists correspondent point 

   ,k k k pP x y E F . 
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The common form for this mapping for key pk F , some fixed pQ  , and 2
ku k 

 
 can be de-

scribed as 

    

    3

, , ;

, , .

k k k p

k

k k k k k p

x g x ifg x Q

P

u x u g x ifg x Q

 


 
 


 

So we obtain the next algorithm for key embedding into elliptic curve point. 

Algorithm 3. 

Key embedding into elliptic curve point. 

Input: , , , pa b k F  , pQ   

1. Evaluate 2
ku k  . 

2. Evaluate  1 kt lsb u . 

3. Evaluate 
2

1
1k

k k

b
x

a u u

 
     

. 

4. Evaluate 3
k k kg x ax b   ; 2 0t  . 

5. If k pg Q then k k kx u x , 2 1t  , and 3
k k kg u g . 

6. Evaluate )(2,1 kxgy  . 

7. If   1klsb y  then k ky p y  . 

8. Evaluate  3t lsb k . 

Output:  ,k k kP x y , 1t , 2t , 3t . 

The main problem which appears now is: how to reveal the key k  from the point  ,k k kP x y ? If 

we solve it, we will have simple algorithm for key encapsulation based on ElGamal encryption al-

gorithm. 

Note that values 1t , 2t , 3t  in Algorithm 3 serve just for the solution of the problem. It is de-

scribed in the next paragraph. 

3. Algorithm of retrieving  k   from point    ,k k k pP x y E F  

In what follows, we are going to build the algorithm for retrieving k . We use the equalities (3) 

and (4) for this purpose. From these equalities, we can get ku  as the solution of correspondent quad-

ratic equation. In case when 
pk Qg   we use the equality (3) and obtain 

 2 1( ) 1 1 0;k k ku u ab x   
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 11
( 1 3 ).

2
k k

p
u ab x

     

In case when k pg Q the transformation k k kx u x was done in step 5 of Algorithm 3, so we get 

equality (4). Solving correspondent quadratic equation we get the value ku  as: 
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Now we can recover the value k from ku . 

Note that to get the value ku  uniquely we need the bit values 1t , 2t , 3t . from Algorithm 3. So we 

get the next Algorithm for key retrieving. 

Algorithm 4. 

Key retrieving from elliptic curve point. 

Input: k px F ,  1 2 3, , 0, 1t t t  . 

1. If 2 0t   then evaluate   11
1 3

2
k k

p
u ab x

     and choose ku  such that lsb ( ku  ) = 1t  

else evaluate    
1

1 11
1 1 1 4 1

2
k k k

p
u ab x ab x


  

     
 

 and choose ku  such that lsb ( ku  ) = 1t . 

2. Evaluate kk u   

3. If lsb(k) ≠ 3t . than evaluate .k p k    

Output: k . 

Conclusion 

We described deterministic algorithms for key embedding into elliptic curve point and for key 

retrieving. These two algorithms give us an opportunity to use elliptic ElGamal algorithm for key 

encapsulation. Note that such algorithm is much more efficient (in speed) than one used in Belorus-

sian national standard for Key Transport and is at least not less efficient than proposed Ukrainian 

project of standard for key encapsulation. But to make more definite conclusion about its merits and 

demerits, this algorithm should be analyzed in more detail. This analysis will be the topic of our fur-

ther researches. 
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