UDC 004.056.5 DOI:10.30837/rt.2019.3.198.09
V.1 YESIN, Dr. Sc. (Engineering) V.V. VILIHURA

SOME APPROACH TO DATA MASKING AS MEANS TO COUNTER
THE INFERENCE THREAT

Introduction

Information in the modern world has become one of the most important resources of society,
and information systems (IS) whose main functional components are databases (DB) have become a
necessary tool in almost all spheres of human activity providing him reliable information for mak-
ing optimal decision. That in turn was reflected in the reverse side of this process. Namely, interest
in the information circulating inside the IS has increased not only from legitimate users and owners,
but also from attackers. The database, as the most important corporate information resource, is one
of the most vulnerable and attractive elements of IS for attackers. Attackers are interested in many
things: internal operational information of the organization, enterprise, company, personal data of
employees, financial information, information about customers, intellectual property products, mar-
ket research results, etc. The main threats to database security today are [1-5]:

— excessive and unused privileges;

— legitimate privilege abuse;

— input injection;

— malware;

— weak audit trail;

— storage media exposure;

— exploitation of vulnerable databases;

— unmanaged sensitive data;

— inference;

— denial of service;

— limited security expertise and education (the human factor);

— database communication protocol vulnerabilities and some others.

Attacks on data warehouses (DW) and databases are one of the most dangerous for various en-
terprises and organizations, practically any branch, be it banks and finance, medicine, trade, high
technology, industry, transport, government agencies and law enforcement agencies, education,
municipal institutions, etc.

According to statistics, in recent years the number of breaches and the amount of compromised
data in the world has been steadily increasing. Thus, according to the estimates of the InfoWatch
analytical center over the past 12 years (2007 — 2019), more than 30 billion personal data records
have been compromised in the world, including over 20 billion in the last two years [6, 7]. And this
is despite the fact that various security experts around the world are constantly doing a great job of
researching, creating and developing principles and systems for protecting information.

Among the threats that are difficult to control within the framework of the database manage-
ment systems (DBMS) and data warehous, a special place is occupied by the threat associated with
the ability of attackers to make conclusions based on various algebraic calculations, comparisons,
filtering the data to which they are admitted, without the need for direct access to the protected ob-
ject itself [8]. This so-called threat of inference. Inference is a way to infer or derive sensitive data
from nonsensitive data [1, 2, 8], which is closely related to two other ways of obtaining confidential
information — aggregation and association of data [1]. The problem of aggregation and association
occurs whenever a set of aggregating or associated data forms more important information than the
importance of the individual data based on which this information is obtained. So information about
the activities of one department or branch of the corporation have a certain weight. The data for the
entire corporation are already much more significance. Or another example: a list consisting of the
names of all employees and a list containing the salaries of employees are open on their own, and

ISSN 0485-8972 Paouomexnuxa. 2019. Boin. 198 113

the combined list with the names of employees and their salaries is already confidential infor-
mation.

The usage of complex as well as a sequence of simple logically related queries allows an at-
tacker to obtain data that is not directly accessible to him. Such a possibility is available, first of all,
in databases that allow to obtain statistical data [9, 10]. Big Data is also subject to the same threat
[8]. In the era of Big Data, the problem of protecting sensitive data is further exacerbated, as tech-
nical methods of protecting privacy are losing ground [11]. In this regard, for example, Google
when implementing the Google’s Street View (for this, photos of roads and houses in many coun-
tries of the world were collected) in Germany faced widespread public and media protests. People
feared that photos of their houses and gardens could aid gangs of robbers to choose profitable tar-
gets [11].

To date, there are no perfect solutions to the inference, aggregation and association problems
[8]. As a rule, countering to similar threats is carried out by such methods as [1, 2, 8, 10]:

— blocking the response with the wrong number of queries;

— control of incoming queries;

— distortion of the response by deliberate correcting the data: limited response suppression;
combined results; random data perturbation; swapping; concealment;

— random sample;

— context-oriented protection;

— polyinstantiation;

— auditing and some others.

At the same time, it is important to understand that, by limiting the attacker's ability to make
inferences based on the information obtained using such methods, we automatically limits queries
from users who do not intend to implement unauthorized access to data. Moreover, attempts to
check requested accesses for possible unacceptable inferences may actually degrade the perfor-
mance of the DBMS [8].

Much of the research on inference based on data obtained in various ways from databases, data
warehouses was done in the early 1980s. However, and today, aspects related to the compromise of
data confidentiality obtained through inference remain largely unresolved [8].

The following is an approach to hiding data, making it difficult for an attacker to implement
the inference threat. It is based on the principles of random permutation of elements (bytes, charac-
ters) of a specific field of the corresponding column (attribute) of a row (tuple) of data and dynamic
data masking (DDM), defined by Gartner as an emerging technology that aims at real-time data
masking of production data [12]. At that, a feature of the proposed approach is that a preliminary
physical change of sensitive data is made in the production database, and it is possible, if necessary
(if masking is no longer required), to lead all changes made during the masking to the initial state
(without data masking) by the user who has the corresponding rights to it. This profitably distin-
guishes the proposed mechanism from most of the typical commercial tools for masking sensitive
data. The legitimate user in the proposed approach gets access to sensitive data due to the ability to
transform (rewrite) the query “on the fly”, and the attacker can only read the previously modified
data that is stored in the database. This approach can also be used in non-production databases, ex-
panding the possibilities of the so-called static data masking.

1. Preliminaries. Data masking method based on the calculation of modulo operations

Today, various masking methods are known (in various sources one can also find the following
terms related to information hiding, such as data anonymization, data de-identification, data scram-
bling, data scrubbing , data obfuscation), which are widely used in certain classes of tasks, namely
[2, 13— 15]:

— substitution. This technique consists in randomly replacing the contents of a data column by
information that looks similar but completely unrelated to the real data (for example, real customer
last names in the database can be replaced with last names taken from a large random list). Substitu-

114 ISSN 0485-8972 Paouomexuuxa. 2019. Buin. 198

tion is very effective in terms of preserving the appearance of existing data. The disadvantage is that
for each column to be replaced, a large amount of replaceable information must be available;

— shuffling is a technique of random shuffling the existing field values in a table column (for
example, data of a table column containing medical records about the patients' health status are ran-
domly shuffled);

— random data deviation (random decimal numbers, random dates, random digits, random
strings) is number and date variance technique. The existing value is replaced with a random one in
a certain range. This technique can prevent attempts to discover true records using known date data
or the exposure of sensitive numeric or date data;

— encryption. The format preserving encryption (FPE) method is used, since ordinary encryp-
tion, as rule, changes the format of the original data and may increase the data dimension, which is
not always desirable;

— nulling out or deletion is simple deletion of column data by replacing it with NULL;

— masking out. This technique is a special case of the substitution technique, when all masked
characters are replaced with the same symbol, for example, “X” (in this case, the credit card number
would be 4343 XXXX XXXX 7357);

— technique of masking numerical data using modulo operations (MOBAT — Modulus Based
Technique);

— compound masking is the technique of masking related columns as a group, ensuring that
masked data across the related columns retains the same relationship. For example, consider mask-
ing address fields, such as city, state (region), and postal codes. These values must be consistent af-
ter masking;

— tokenization. In this technique, data elements are replaced with random tokens — values that
should not be associated with the replaced sensitive data either mathematically or in any other way.
The token does not carry any confidential information, it is only logically associated with real data
that is stored in a well-protected database
and some others.

However, most of the masking techniques described above, except for the encryption, tokeni-
zation and MOBAT techniques are used for static masking of non-production databases and, after
their application, do not allow canceling operations in order to return to the original data, that is not
always acceptable. This is especially important for production databases if it is supposed that this
mechanism will be used to counter the inference threat.

At that, the encryption method is quite resource-intensive, and MOBAT is specifically de-
signed to mask only numerical values [15]. But, quite often there is a need for masking not only
numerical values. For example, in databases built on the basis of the schema with the universal ba-
sis of relations [16, 17], that can be used, including as data warehouse of various subject domains,
the attributes (columns) of relations (tables) containing sensitive data are defined on the domain of
character strings.

Therefore, the need arose to find some new solution that would be no worse than the existing
ones and would allow, to a certain extent, to reduce the probability of the inference threat.

After analyzing the capabilities of the above techniques, as well as the best practices of hiding
information from leading vendors in the masking market [18], first an attempt was made to use
mathematical transformations based on calculating modulo operations not only for numerical, but
also for data types such as a character string, converted to a numerical value.

So, for example, the characters of the string 'Abc123-F0", first converted into a hexadecimal
string 4162633132332DDOAE (similar character conversion is done in the encryption method with
preservation of the format [19]), is converted to a numerical value in the decimal number system —
1206127929121208914094, over which the transformation is then performed similar to the
MOBAT technique:

ISSN 0485-8972 Paouomexnuxa. 2019. Boin. 198 115

Rf; = Ry —((Kjmod K{*)mod K) + K7, 1

This is a direct transformation, which is necessary to mask a specific value of the field R; of

the i tuple of specified attribute ; of the certain table (relation) R, where lej is the masked value

of the field; KIR is a 128-bit random generated value (private key) that is constant for the table R ;
K{ is a 128-bit random generated value (private key) that is constant for the attribute j of the table

R; Ké is a public key, each value of which is determined by the value of the i -th row field, one of

the selected column (attribute) of the table. For this purpose, it is recommended to use a long inte-
ger typed column. Namely, as a public key, it is best to use the value of the integer identifier (ID)
column of the primary key of the table R .

The inverse transformation is performed to unmask a specific value of the tuple field of the
specified attribute of the certain table R :

Rl.j:R&+((K§m0dKfe)m0ng)—Kj, 2)

To perform mathematical transformations (1), (2) over the obtained long integers, algorithms
and programs for their implementation were developed. The algorithms associated with the imple-
mentation of computational operations on converting long integers into different number systems,
without which in practical implementation it was impossible to do, are based on the Horner's rule,
which allows reducing computation and memory.

However, after calculating modulo operations over converted characters, in general, the result
contained not only normal (print), but also control characters, which made it difficult to represent
them in a readable form. Therefore, the result was represented in the form of a hexadecimal string,
which is convenient to store and process in the table field with the type of a character string, or con-
vert to decimal form, which is convenient for numerical processing. However, such a representation
could not always be suitable for various kinds of applications. In addition, when using long charac-
ter strings, the implementation time was not only increased, but the high bytes were practically not
transformed due to insufficient key length, except for converting string type values to numerical
type. This is shown in example 2 below.

Example 1. Let in some sequence of rows of one of the table columns, whose data should be
masked, the string of Cyrillic characters 'TPC-56' is stored.

For a better representation and understanding of the corresponding data transformation, let it be
sequential rows (table rows with sequentially increasing numbering (increment on ID)).

The result of applying the formula (1) to the values (TPC-56') of the column (we define it as
DATA_X) the corresponding rows of some table is represented below:

ID DATA X
19746 E144A5509211952AEBE3C470A25F8CO
19747 CF518B3AC5B88CB41835AE555349764
19748 8BDCODS5DE66F27BEF9280344028AB827
19749 8F48799ABEC3709CE2D45656532205E
19750 506741F22A4834CDEA6DEE65EACD651
19751 ES5CBFC700E29E9374A81A902FF7BDIF
19752 C70DA272B74C3303321CA6E4FCF0A20
19753 1600D8CE183AEE9AEO073EAT796A06275D
19754 1649CD15E479D33CADD0193E19894C1D
19755 14D66A41674FFD516D9CC884BD8A6530
19756 C39366DA0CO9E841C5A7516A42A41EDF
19757 FF1CS5FA372FBA9337CE685174794AC7
19758 S0A9BDB60B7BEFDD79602050C8E8B1E9
19759 11DA56F36CB5A2611031BAD1IBE2CCIOT7F

116 ISSN 0485-8972 Paouomexuuxa. 2019. Buin. 198

Where ID column values are the public keys Ké for the i-th row of the table. In considered
case these values are in the range [19746, 19759] (K e [19746, 19759]).

Example 2. Let the Cyrillic character string '®ocbopurnent pynumk' is stored in some rows of
the same column DATA X.
Applying formula (1) to the corresponding data column leads to the following result (represen-

tation of the transformed character string in different table rows):
ID DATA MASKING

20659 DOA4DOBED181D184D0OBED180D0OB8D182DOBDD1ISECS501E1077C3320E176F0F1B28A3505
20660 DOA4DOBED181D184DOBED180D0B8D182D0OBDD193555D8DA87CF439DBA3A015BOACC2CT
20661 DOA4DOBED181D184DOBED180D0OB8D182DOBDD196A3BCDB859EAOED94B53DB4421A399B
20662 DOA4DOBED181D184DOBED180D0OB8D182D0OBDD1957238A723EF5F6E3989C1D314106159
20663 DOA4DOBED181D184DOBED180D0OB8D182D0BDD1913798672CA2D33A572138BA761E3594
20664 DOA4DOBED181D184DOBED180D0B8D182D0OBDD193224CFBAOEO590C3D70A2EACD6F05BE
20665 DOA4DOBED181D184DOBED180DOB8D182D0OBDD1A1F3333683E2691BA17399ECT724353CD
20666 DOA4DOBED181D184DOBED180D0OB8D182DOBDD193A795A0B46246692D738F4A63F4B648
20667 DOA4DOBED181D184DOBED180DOB8D182D0OBDD19F44BF9C5416208F6C5E33D44F9B811C
20668 DOA4DOBED181D184DOBED180D0OB8D182DOBDD190AEES542469687FCE3FF8DD1IC18DEATC
20669 DOA4DOBED181D184DOBED180D0OB8D182D0OBDD19D68DAD6COBAATFC24FAE62B2526F3D1
20670 DOA4DOBED181D184DOBED180D0OB8D182DOBDD19BF2CB316D1D2908F7FDC4F142E73CD0
20671 DOA4DOBED181D184DOBED180D0OB8D182D0OBDD196FACEL18263F66DA86C3793598F6B2FD
20672 DOA4DOBED181D184DOBED180D0OB8D182DOBDD1A0892F4B6BES30B3E3DOD7CFFEE311CA
20673 DOA4DOBED181D184DOBED180DOB8D182D0OBDD19EBEF7F8AACS53585510F40366E236CF5A
20674 DOA4DOBED181D184DOBED180D0OB8D182DOBDD19C1A189D7A0A289CB6F5AC214962308A

As you can see from the last example, the part of the transformed data (highlighted in color) for
the same original row is the same.

To eliminate this shortcoming, it became necessary to mix them. As one of the expedient op-
tions, an obvious solution was seen, the essence of which lies in the random permutation of the cor-
responding bytes of the received row code with the possibility of their inverse recovery.

As is known, most of the cryptographic algorithms are still combining substitutions and permu-
tations (transposition) [20, 21], what else C. Shannon noticed in his work [22], summarizing the ex-
perience gained before him in developing ciphers. As it turned out, even in complex ciphers, simple
ciphers, such as substitution, permutation, or a combination of them, can be distinguished as its typ-
ical components. “Substitution and transposition are still the most important kernel techniques in
the construction of modern symmetric encryption algorithms™ [21]. Well-known computer security
experts, cryptography N. Ferguson, B. Schneier in the monograph [23], talking about what would
the ideal block cipher look like, note that this should be a random permutation. Specifying at the
same time that for each key value the block cipher must be a random permutation of the plaintext
variants and the different permutations for the different key values should be chosen independently.

The proposed solution led further to a new method.

Thus, the initial approach led to a new more efficient and less computationally expensive
method — the method of random permutation of the data elements of the row field. Although in
some cases, for example, when small length of rows or increasing the key length and parallelizing
the computation processes, and the initial approach can be used.

2. Hiding sensitive data of row field by method of random permutation of its elements

As it is known, a permutation of n objects is an arrangement of » distinct objects in a row [24].
If we number the places of these objects from left to right (1,2,...,n), then we can formulate the fol-
lowing definition: the one-to-one mapping p:A4—> A of a finite ordered 4={ay,a,,...,a,} set

from n elements onto itself is called a permutation of elements of the A4 set. In the general case, for

n-element set 4 with a fixed order of a;,a,,...,a, elements the permutation is an arbitrary se-

quence of length n from different elements of the set 4. Permutations of n elements of the set 4
differ from each other only in the order of their elements.

ISSN 0485-8972 Paouomexnuxa. 2019. Boin. 198 117

Permutation p can be written as a matrix of two rows. For example, the permutation
n:A—> A of the set 4={a,b,c,d,e} such that n(a)=e, n(b)=d, n(c)=a, n(d)=>b, n(e)=c
can be written as follows:

_[abcde
JT_(ea’abc)' 3)

Usually the nature of the elements of the set 4 are inessential, so without loss of generality,
we can be considered that 4=1{1,2,....n} (otherwise you must go to the element numbers (g;,

where i € {l,...,n})). Then each permutation m of these elements can be written as a matrix of the

n:(123..n)’ @)

ap ar 613 an

following two rows:

where {ay, ay, a3, ..., a,} ={1,2,3,...,n}, n(i)=a;, forall ie{l,...,n}.

The number of all permutations © from » different elements is equal to «,, = n!

For each permutation r, there is a inverse permutation 7! that undoes the effect of . The

product non) equals the identity permutation 7, = nen L.

The inverse permutation aj, a5, a3, ..., a,, is obtained, if in (4) swap the rows of the matrix,
and then arrange the columns in ascending order by the upper elements:

aqayay..a,_(123.n (5)
123 ..n) \aayas..a,)

Let us apply the above theoretical information from combinatorics to the solution of our task of
masking the specific value of R;; field of I tuple of the specified attribute ;j of the specific table

R , through the random permutation of the sensitive data elements of the row field. Randomness in
this case means the equiprobability of obtaining any of »n! possible permutations from the set 4.

The proposed method of random permutation of elements (bytes, characters) of data of a spe-
cific field of a different type (numeric, character strings, Binary Large Objects (BLOBs), Character
Large Objects (CLOBs)) of table row is based a modern version of the Fisher-Yates shuffle algo-
rithm [25], presented by R. Durstenfeld in [26]. This algorithm (called “Algorithm FY”) in
pseudocode is presented below.

Algorithm FY

Input: A is an array with n22 elements (n is permutation length)
Output: random permutation on A
for i = n downto 1

j = random(l..i) /* a random number is generated in the range [1,1i] */
swap (A[1], A[Jj]) /* exchange */
end for

The main reasons for choosing the Fisher-Yates shuffling algorithm were its following ad-
vantages:

— a small number of steps performed operations. The asymptotic computational complexity of
the modern version of the algorithm is O(n), where n is the number of elements of the set (in this
case, this is the number of elements (characters, bytes) of the data of specific field);

— when using a high quality unbiased random number generator, the algorithm guarantees an
unbiased result;

— its efficiency and simplicity have so far stood the test of time [27].

118 ISSN 0485-8972 Paouomexuuxa. 2019. Buin. 198

The Fisher-Yates algorithm uses a sample of uniformly distributed random numbers from dif-
ferent ranges. Therefore, it is important that one could take advantages of this algorithm, it is neces-
sary to use pseudorandom number generators (PRNGs), which form random numbers that exactly
are unbiased in some part of the interval. On the other hand, as noted in [28], the Fisher-Yates algo-
rithm is not able to generate more than m different permutations, that is, it cannot create more per-
mutations than the number of internal generator states. And even when the number of possible gen-
erator states exceeds the number of permutations, some of them may appear more often than others.
In order to avoid the appearance of distribution unevenness, it is usually recommended that the
number of internal states of a random number generator exceed the number of permutations by sev-
eral orders of magnitude, if this is actually possible. Although in most cases, there is actually no
need to receive all permutations [28].

Therefore, based on the foregoing, the proposed method provides for the possibility of using,
depending on the situation (this is mainly due to the need to perform the procedure of permutation
of the data elements of various type fields with minimal time costs), different PRNGs that satisfy
the above requirements (cryptographically strong PRNG in this case is not required). We need to
perform such transformations — permutations in advance so that an attacker cannot, using complex
as well as sequences of simple logically related queries, obtain data that is not directly accessible to
him, based on inference (that is realize the inference threat) for an acceptable time for him. At that,
a legitimate user could get the required sensitive data quickly enough and simply.

In the proposed implementation of the method were used:

1) linear congruential random number generator, popularized in [29]:

X =(aX; +c)modm (6)
with constants (multiplier a =1664525 and increment ¢ =1013904223) chosen by D. E. Knuth and
H. W. Lewis, where m=2"%;

2) random number generator of built-in DBMS RANDOM package for Oracle DBMS, namely
DBMS RANDOM.VALUE, which generates floating-point numbers with 38 digits to the right of
the decimal (38-digit precision), with the possibility of setting them various range;

3) G. Marsaglia pseudo-random number generator (Xorshift) [30] with a period of 2'**-1:

unsigned long xor128 ()

{static unsigned long x=123456789, y=362436069, z=521288629, w=88675123;
unsigned long t;

t=(x" (x<<11)); x=y; y=2z; zZ=W;

return (w=(w” (w>>19)) " (t~ (t>>8))) ;

}

In the Xorshift generator, some initial sequence is specified, to which the operations of the ex-
clusive OR (XOR) and logical shift are applied. This PRNG was selected based on the recommen-
dations given in [31]. In principle, based on these recommendations, you can choose any other
PRNG, including those given in the same work [31].

All the generators in the software implementation were checked the correspondence of the out-
put random numbers in the given range to the uniform distribution law.

Masking algorithm
Preliminary remarks. The proposed solution uses a universal scheme for hiding data of various

type fields of a tuple row of some database table, based on the use of public and private keys KIR ,
Kg , Ké. KlR is a unique 128-bit random value (private key) generated by a cryptographically

strong PRNG for each table R (it is constant for all values that will be masked in this table). K 5 is

a unique 128-bit random value (private key) generated by a cryptographically strong PRNG for
each attribute j of the table R (it is constant for all values that need to be masked in this column).

ISSN 0485-8972 Paouomexnuxa. 2019. Boin. 198 119

Ké is a public key based on the value of the integer identifier of the primary key of the 7 -th row of

the table R (it is constant for all values in the columns that will be masked in this row).
An authorized user, with appropriate privileges, which will provide the correct key in an open

session to decrypt the row of the special table (R%“"*") encrypted with the AES-256 algorithm
(keys and some other information, such as table and column names, are stored in the rows of this

table), has the mediate access (through the corresponding middleware) to the private keys KIR,

K{ . All other users, even privileged, without knowing this key, will not be able to extract the pri-

vate keys from the table R**“"“' | and, therefore, will not be able to perform neither data masking

operations nor reverse operations (unmasking or inverse masking).
Algorithm operations

1. The initial value (X 2_') of PRNG is generated.
1]

For each row i of the corresponding column ; of the selected table R, this value is different:

Xgl_j = hash(K{* + K§ — K3)mod(Nppay) » (7)

where hash() is one of the cryptographic hash functions (such as: MD4, MD5, SHA-1, SHA-256,

SHA-384, SHA-512, SHA-3). The purpose of using a hash function is mixing (non-injectively
transform) private and public keys to make it impossible to recover them from the final result and

getting significantly different from each other formed initial values X 2 for PRNG, even if at least
i

one of these keys changes by one character (one). N,,,, 1s the maximum allowable integer in the
corresponding implementation. Modulo operation N, is also non-injective.

2. Actions are performed in accordance with the Fisher-Yates algorithm:

— a random integer is generated (using one of the selected PRNG, to the input of which the

generated initial value X 2” is supplied);
y

— the permutation procedure of elements (bytes, characters) of the source string A of length n
is performed.
As a result, we have the transformed (masked) field value (4) of each row i of the column ; of

the corresponding type for the selected table R .
The general scheme of the masking algorithm (MA-1) is represented below in pseudocode.

Masking algorithm 1 (MA-1)

Input: name table, name column, Ki, A, N

max

Output: masked value of the data string - A

Decrypt (R**°**‘[name _table, name column]) — (K., K., PRNG, hash)
0 _ R 7 i
Xp, = hash(K; + K; — K;) mod (N, _.)
switch(PRNG)

{case 1: linear congruential generator (LCG)
case 2: built-in random number generator (package DBMS RANDOM)
case 3: pseudo-random number generator Xorshift

for i = n c}lownto 1

j=random PRNG(l..i) /*a random number is generated in the range [1,i]%*/
swap (A[1], A[J]) /*exchange*/

end for

120 ISSN 0485-8972 Paouomexuuxa. 2019. Buin. 198

Without knowing the initial value X O” , it is rather difficult, and with long data strings (large
1]

dimensions A (large n)) it is almost impossible to determine the sequence of random numbers gen-
erated for the permutation (the number of which is equal n!). This means that it will be difficult for
an attacker to determine the source strings after their corresponding transformation. Thus, we re-
strict an attacker to use a various set of queries for inference, for example, by presenting the same
data stored in the database in a different form. As a result, misleading the attacker, we counteract
the inference threat.

Example 3. Let the following string of Cyrillik characters 'kpri-17' (4={K,P,I1,—,1,7}) be
stored in some row of one of the table columns whose data should be masked.

Applying the MA-1 algorithm (Masking algorithm 1), and getting, for example, one of the ran-
dom permutations:
_ (1 2345 6)
“l653412)
we have the transformed (masked) value, namely, the string of characters '7P — K1I1', as a result of
the mapping: 'KPII-17'—'71[1-KP', that is =n(K"='7", =n(P")='l", =n(Il")='Il",
n(-")="-", n('1)="'K", n('7")="'P"', where a; are the numbers of the i-th element (i e {l,...,6})
of the source character string to be masked, each which should be placed in the appropriate position
after transformation. So ¢ indicates to the sixth character ('7') of the string 'KPII—-17" that

= 123456
\ay ay a3 a4 as ag

should be placed in the first position of the transformed string; a, indicates to the fifth character
('1") of the string ' KPIT—17" that should be placed in the second position of the transformed string,
etc. for as, ay, as, ag.
Algorithm inverse to masking algorithm
Preliminary remarks. The proposed solution for recovering the masked data of the row field
uses an inverse permutation algorithm, similar to that described in [24], with the peculiarity that it
does not limit the permuted elements to only numbers {1, 2, 3, ..., n}, but can use any characters of

national alphabets, numbers represented in hexadecimal or other number system. Namely, having
an initial permutation:

n=(n(1),n(2),...,m(n)) (8)
and the result of its application:
(V1532500 V) = (1) X (2) 5+ X ()) 5)
the inverse permutation can be obtained using the formula [21, 24]:
n (n(i) =i, (10)
as:
(01525 X) = (V1 s Yo oo Yl) (11)
or in matrix form, as:
X[r()]=Y(@). (12)

xl X2 X3 Xn

If through 7, we denote the permutation =, =(Y Vy V3 e Y

j , where y;=n(x;),

123..n

) the corresponding permutation for it, as a map-
aap az ...ay

ie{l,..,n}, and through w,,,, =(

ping of the numbering onto the corresponding elements of the set, where

ISSN 0485-8972 Paouomexnuxa. 2019. Boin. 198 121

{a1, ay, a3, ..., a,} =1{1,2,3,...,n}, then the formula (12) for the inverse permutation can be written
as follows:

Tah (R (D) = T (7). (13)

However, first you need to get the initial permutation before finding the inverse for it. There-
fore, the sequence of actions will be as follows.

1. The initial value (X 1(-()»._) of PRNG is generated.
1]

It is necessary to choose exactly the PRNG which was used during the initial permutation. For
each row i of the corresponding column ; of the selected table R, the initial value is determined

in accordance with formula (7).
It should be noted that an attacker to obtain an initial value (to form an initial permutation
equivalent to that formed in the MA-1 algorithm) needs to know at least the values of two private

keys (KIR , K{), as well as the type of cryptographic hash function used and PRNG used. In addi-

tion, the number of permutations (how many times has a set of operations been performed to per-
mute row characters) for each specific row of the protected table can be different. Brute force of on-
ly two 128-bit random numbers generated by cryptographically strong PRNG is a very resource-
intensive task in order to realize it in a reasonable time. The number of combinations (excluding the
definition of the hash function used, PRNG and the number of times performed operations when
permutation of row characters) that need to be checked for the columns j of the R table is at least

%_j.2128_2128 _
chance).

2. The initial permutation is determined.

Thanks to the possibility of repeating a sequence of numbers formed by the PRNG from the
same initial value, performing actions in accordance with the Fisher-Yates algorithm, we obtain the
initial permutation (similar to that obtained when the implementation of the MA-1 algorithm):

123..n
aap az ...ay,

Jj 2235 5 5.8. j-lO76 (half of the total amount of possible brute force tests; 50%

n=(n(1),n(2),...,m(n)) or in other notation mw,,,, :(), as mapping the numbering

onto the corresponding elements of a set.

3. The inverse to masking transformation is performed.

Having gotten the initial permutation nt = (n(1), n(2),...,m(n)), and, having the input string of
the masked data Y(i), in accordance with expression (14) you can determine the original (not
masked) value of the row field X (i), where i € {l,...,n}.

The general scheme of the inverse masking algorithm (IMA-1) is represented below in
pseudocode.

Inverse masking algorithm 1 (IMA-1)

Input: name table, name column, Ké, Y, Nmax
Output: inverse of masked value - X
Decrypt (R**°**‘[name _table, name _column]) — (Ki, K, PRNG, hash)

0

X, = hash(k] + K] - K;) mod(N,,)
for i =1 ton
T, L1 = 1 /*array preparation*/
end for
switch(PRNG)

case 1: linear congruential generator (LCG)
case 2: built-in random number generator (package DBMS_ RANDOM)

122 ISSN 0485-8972 Paouomexuuxa. 2019. Buin. 198

case 3: pseudo-random number generator Xorshift

P

for i = n downto 1 /*getting initial permutation*/
j=random PRNG(1l..1i)

swap (®,, [1], ® [J])

end for

for i = 1 ton /*inverse of a permutation*/
Xn, 111 = Y()

end for

Example 4. Let the character string '7P— K1I1' is stored in some field of the tuple i of the at-
tribute j of table R as a result of masking (see Example 3). It is required to transform it to its orig-

inal (before masking) state.

1. On the basis of the read values of the keys (two private and one public), knowledge of the
hash function used and the PRNG, in accordance with the formula (7), the initial value for PRNG is
formed. This step, naturally, is available only to an authorized user with the appropriate privileges
Rsecret)

and knowledge of the access key to the table
2. Determination of the initial permutation (x,,,,,,) of the numbers of the elements for the char-

acter data string. After the corresponding initialization of the PRNG, which was used during the
masking, actions are performed in accordance with the Fisher-Yates algorithm.

In this example, the initial permutation has the form (see Example 3):

. (123456):(123456)
hum ap ap daz a4 as dg 653412

3. Inverse to masking transformation.

In accordance with the formula (12) we have: X[6]=Y(1)='7"; X[5]=Y(2)="1";
XB1=YR)="11"; X[4]=Y4)="-"; X[1]=Y(5)="K"; X[2]=Y(6)="P".

Having ordered the indexes in ascending order, we get the string: 'KPII-17"'. The resulting
value is equivalent to the masked value (see Example 3). That confirms the correctness of the algo-
rithm IMA-1 (Inverse masking algorithm 1).

3. Comparative analysis of the quantitative and qualitative characteristics
of the proposed algorithm and an encryption algorithm

Comparative analysis of quality characteristics

For a better representation and understanding of the corresponding data transformation (quali-
ty characteristics), Table 1 below shows the masking results of the character string 'KPI1-17"' using
the proposed algorithm using various PRNGs and the ordinary encryption algorithm AES-128. The
following PRNGs were used: 1 — linear congruential generator (expression (6)); 2 — random number
generator of built-in DBMS RANDOM package for Oracle DBMS; 3 — pseudorandom number
generator Xorshift with the (2'%*-1) period. For clarity, the adjacent rows were selected (rows of the
table with sequentially increasing numbering).

When encrypting character strings using the AES algorithm, the same mechanism for extract-

ing and applying keys from the table R**“"® was used as in the above proposed masking algorithm.

Herewith the result of the formula (7) was used to determine the initialization vector in the encryp-
tion algorithm.

As we can see from Table 1, all the resulting strings are different from the original string. And
this is important! But at that, the converted strings using the proposed approach retain the format
and do not increase the dimension of the string, as in the case with the encryption algorithm. That in
certain applications is critical and unacceptable. In this respect, the ordinary encryption algorithm
concedes the proposed method. To eliminate this shortcoming, you can use encryption algorithms

ISSN 0485-8972 Paouomexnuxa. 2019. Boin. 198 123

with format preservation (format-preserving encryption — FPE), but their implementation, for ex-
ample, in Oracle, as noted in [14], involves significant processing.

Table 1
Character string masking results
ID |DATA MASKING 1| DATA MASKING 2 | DATA MASKING 3 DATA_ENCRYPT

18136 [I-P7K1 P1KII7- -71IPK FO3EOODBD4D478A1D331F6CFAEC6A3DFE
18137 1I7-KP 71PK- K1P7-1I| 689783C6F95F526126C48FEGF11BEF13
18138 -7KP1 PIIL7-K KI1P7-| C5B6BAFB17C10C528A7490B66E19A2B0
18139 N1K-P7 P-K7I1 -1K7IP| E908DB627314C84B572486457ED0670A
18140 P17II-K KII7P-1 P7KII-1 4766A178B39586108DDB57F8ADBESASA
18141 171PK- 71-KPII KI17P-| 6ECF167783564759E8D31753D59A53E3
18142 -KP7I1 1K-PII7 KP-II71| OFO0D486A4F9CB189FA7092CB2CA4DATE
18143 1MIP7K~- 71KII-P -PKII71 315690B8B84DA3460A4F4933DCAT7648F
18144 P7-K1II KIIP1-7 PK-71I| 59DAA907A9CC38FF1A52C8ABICDIDCCS
18145 7-PK1II K7-1PII 1KP7II-| 58F46C87949558D2C02CCBE3F368D09F
18146 KII7P1- -17KP P1N7-K| DD3F2CC50EBD51FE991B8334EB50C347
18147 P1I7-K K-71P1 KP17-II| CD50A2ECA5D987419BB8C6794BDCBETL
18148 -K70P1 K71P- K-7IP1| 6549D15CC334245CDF7182CC2983C3C4
18149 -1PII7K PK1-7II 7-PK1II B37403B75997F2A535FA002239EDDEFS5
18150 71PK- -II1KP7 K7I0-1P| DOC9509DDBD4ED6952E4434EASFC13C2
18151 K71-1P ~K7P1II -P7N1K| 975AE4AEFS567EDEECOE40ECTF48A75D9
18152 P170-K 7-K1IP 71M-KP| 82084A1E15F818543D0845A535810F7D
18153 1K-7P P-K7I1 K1-P7| O9E7F647331CAF130D02CICBCBB53968A
18154 -P17K -K71IP P-KI71| 2C85EDFE7307EAF7EF11B7766B7416DF
18155 P7IIK-1 K7-T1P NP-71K| 8FECDE765DE3773788C79040118B9A6B
18156 7-1KPII KII17-P K-TI11P7 25F2F78484CD4872FC8FEGEOA3SAB22F
18157 I1KP7- Kp-7II1 P7-1IIK CD62C80ES53122CCA4AAEF2472734EC138
18158 P-T7KII1 K7-II11P IIK-P17 2DF64FC7780264AEF4E7D3BF49214ACF

Analyzing the results of Table 1, it can conclude that an attacker has little chance to determine
from the available information that all these values are associated with the same character string
'"KPII-17"' (with the same real object). Although the number of permutations is not so large 6!=720,
but in this particular case even statistical cryptanalysis is difficult, since, in fact, after the corre-
sponding transformations, it may turn out that completely other and different objects of the modeled
subject domain will be associated with the obtained transformed names. This significantly makes
difficult the implementation of inference threat for an attacker. And, therefore, the proposed ap-
proach to hiding will not allow an attacker to obtain data in a reasonable time for him, access to
which is directly closed to him.

Sometimes it is necessary to mask part of the field value of a table row, for example, for mask-
ing phone numbers, discount cards, bank cards, serial numbers of equipment and devices, car num-
bers, etc. In this case, the ordinary encryption method is not acceptable. The proposed approach, on
the contrary, is suitable for solving this problem; for this, only some modification of the MA-1 al-
gorithms (Masking algorithm 1) and IMA-1 (Inverse masking algorithm I) represented above is
necessary.

Schemes of the modified algorithms MA-2 and IMA-2 (differences from MA-1 and IMA-1 are
highlighted in color) are represented below.

Masking algorithm (MA-2)

Input: name table, name column, Ki, A, N i end, i beg

max

Output: masked value of the data string - A
Decrypt (R**°**‘[name _table, name column]) — (K., K., PRNG, hash)

124 ISSN 0485-8972 Paouomexuuxa. 2019. Buin. 198

X) = hash(Kf + K] — K!) mod (N
switch(PRNG)
{

case 1: linear congruential generator (LCG)
case 2: built-in random number generator (package DBMS RANDOM)
case 3: pseudo-random number generator Xorshift

max)

i..

for i = n-i end downto i beg
j=random PRNG (i beg..i) /*a random number is generated in the range [i_beg,i]*/
swap (A[1], A[7]) /*exchange*/

end for

Inverse masking algorithm (IMA-2)

Input: name table, name column, Ké,Y,N i end, i beg

max !

Output: inverse of masked value - X
Decrypt (R**°**‘[name __table, name column]) — (K, K2j, PRNG, hash)
0 _ R 5 i
Xr, = hash(K; + K; — K;) mod (N, _.)
for i =1 ton
T, 1] = 1 /*array preparation*/
end for
switch(PRNG)

{

case 1: linear congruential generator (LCG)
case 2: built-in random number generator (package DBMS RANDOM)
case 3: pseudo-random number generator Xorshift

}
for i = n-i end downto i beg /*getting initial permutation*/
j=random PRNG (i beg..1i)

swap (7, . [1], ® . [3])

end for

for i =1 ton /*inverse of a permutation*/
xin,, [i]] = ¥()

end for

Where the parameters i beg, i end define the boundaries of the transformation interval,
namely: i beg — from which position from the beginning of the string the permutation should be
performed; i end — up to which position from the end of the string permutation should be per-
formed.

In addition, to mask, for example, bank cards after the corresponding permutation procedure
(see algorithms MA-2, IMA-2), it is also necessary to calculate the last check digit using the Luhn
algorithm [32], in accordance with the ISO/IEC 7812 standard.

Tables 2, 3, 4 show the masking results using the proposed algorithm (with different PRNG: 1
— LCG — the result in the DATA MASKING 1 column; 2 — built-in PRNG — result in the
DATA MASKING 2 column; 3 — PRNG Xorshift — result in the DATA MASKING 3 column) of data
on card numbers stored in the corresponding sequences of adjacent rows of some table, namely, on
Visa bank card — number '4454102135347018', Master Card bank card — number
'5167135104128196"', American Express payment system card — number
'378282246310005", with preservation of the card type.

ISSN 0485-8972 Paouomexnuxa. 2019. Boin. 198 125

If you need to mask some table fields that store, for example, important text documents (data in
one of the text formats: both in TXT format itself and in other, for example, such specialized for-
mats as INI, HTML, XML, TeX, JSON, LOG, source texts of programming languages and others
for which it serves as the basis), which are significantly larger in volume (length) the character
strings discussed above, then this task can also be effectively solved using the proposed method.

Table 2
The masking results of Visa bank card number
iD DATA MASKING 1 | DATA MASKING 2 | DATA MASKING 3
35359 |4411443305170521|4401235043741510(4400451172135348
35360 |4413021740415533|4437312451510402|4413535021740418
35361 |4434230511514078|4451124347013504|4433412071450155
35362 |4441031715425306|4454317254110308(4445701534021132
35363 |4410203415715438[4401473215035144(4401112347355406
35364 |4471310435041525|4431424310075158(4403441103715257
35365 |4442031413755102(4453113442705013|4450104341275318
35366 |4434032105174511(|4470310431215454|4432740405113516
35367 |4442714501531309|4413274510410354(4401351344017250
35368 |4411233574040152|4401354023541715(4470315450124131
Table 3
Masking results the number of Master Card bank card
ID DATA MASKING 1 | DATA MASKING 2 | DATA MASKING 3
35369 |5174311028615912|5121381165147098|5173192416150188
35370 |5193751482161100|5116471112850931(5111091716482355
35371 |5193711261150849|5173051612198419(5131072681541199
35372 |5174513918161028|5124311678019515|5171350492111688
35373 |5110341258911670(5176018951231413|5162081179141356
35374 |5111501217936485|5114811259061374(5193110548211674
35375 |5105311179468123|5168143975012118{5143196250811174
35376 |5113517462018918|5129713164051180(5171591241013689
35377 |5101512147198361|5164113082517196|5192304161118750
35378 |5141351291186076|5118107163219455|5171084112195363
Table 4
Masking results the card number
of the American Express payment system
ID DATA MASKING 1 | DATA_MASKING 2 | DATA MASKING 3
35379 |372800263182043|370020288642317| 371288240036022
35380 |378022631084025|370816438022205| 372206321048087
35381 [372006822180433|370010822348265| 372142063008825
35382 [373206140282809|372382004682011| 376482020308215
35383 |372860104823205|371242806280300| 372200346821081
35384 |370280463102285|376182320802400| 372302880420161
35385 |372843260180024|376048820221039| 372042318028604
35386 [378231264800025|376082412008322| 371862302802040
35387 |372012648080237|370102628084325| 373802460082124
35388 [372020023868415|378023801262045| 372822460183004

The proposed method, as it was noted above, can be applied to the masking of the fields of ta-
bles that store data not only of the character string type (character, character varying) and numeric
types (integer, number), but also data of the BLOB, CLOB type that allow you to store in the data-

126 ISSN 0485-8972 Paouomexuuxa. 2019. Buin. 198

base, for example, documents of such formats as: DOC, DOCX, RTF, XLS, XLSX, XPS, PDF,
PPT, BMP, GIF, TIF, MP3, AVI, etc. But this important question, which has interesting features of
practical implementation, in this paper, in view of its limited scope, will not be considered. This is
the subject of a separate article.

Quantitative characteristics of comparative analysis

The results below were obtained with the appropriate data transformations of the database ta-
bles. The database was implemented on the Oracle 12.2 ¢ DBMS platform installed on the Win-
dows 10 (x64) operating system on various computers.

Option A. Computer with Intel (R) Core (TM) 2 Duo CPU 2.16 GHz, RAM 4 GB, HDD 320
GB was used.

Option B. Computer with Intel(R) Core (TM) i3-7100 CPU 3.90 GHz, RAM 4 GB, HDD 500
GB was used.

About 18,000 data rows of some varchar2(255) column of a table of real database were sub-
jected to transformation (masking, encryption) with recording to the database. Fig. 1, 2 shows the
results of the average times (in seconds) of masking and unmasking, encrypting and decrypting
character strings with writing to the database all 18,000 data rows using the proposed permutation
algorithm (were used linear congruential PRNG (PRNG-1) and pseudo-random number generator
Xorshift (PRNN-3)) and the ordinary AES-128 encryption algorithm for options A and B respec-
tively.

Option A

[Average time to implement masking (encryption) in seconds

B Average time to implement unmasking (decryption) in seconds

10.500
9.000
7.500
6.000
4.500
3.000
1.500
0.000

Seconds

AES128

@ Average time to implement

masking (encryption) in seconds 8.250 375 239

Average time to implement

unmasking (decryption) in seconds 8.39 10.02 935

PRNGs, encryption algorithm

Fig. 1. Average time to transform character strings (option A)

OptionB
[Average time to implement masking {encryption) in seconds

M Average time to implement unmasking (decryption) in seconds

~
o

Seconds
0000 pPpREE NN
ON AR NAETOONMN &

[Average time to implement
masking (encryption) in seconds

Average time to implement
unmasking (decryption) in seconds

213 2.55 251

PRNGs, encryption algorithm

Fig. 2. Average time to transform character strings (option B)

ISSN 0485-8972 Paouomexnuxa. 2019. Boin. 198 127

As follows from the conducted research, the usage of the ordinary encryption algorithm loses
to the proposed method not only in qualitative characteristics, namely, changes in the presentation
format, but also quantitative due to the increase in the length of the stored data and the transfor-
mation time for hiding data. If, when using Xorshift PRNG, the compared times of corresponding
transformations for both methods are almost the same, then already compared to the permutation
algorithm, when using the linear congruential PRNG, the implementation of the encryption algo-
rithm loses to it (11-12)% for option A and (15-17)% for option B, respectively. (Note. The current
implementation of Xorshift PRNG in PL/SQL is currently not an optimized implementation due to
this language does not support hardware implementation of logical shifts, XOR operations, and
therefore these ones are solved algebraically).

4. Usage restrictions of the proposed method and features of its implementation

When the length of the string is less than three characters or, if all the characters are the same,
masking using the proposed method is inexpedient. In this case, it is advisable to use:

— or a substitution method with elements of the proposed approach, namely, by creating a
mapping table with a random selection from it of characters or their combinations, using the availa-
ble PRNGs and the shuffling mechanism of the proposed permutation method for this purpose (with
the ability to subsequently restore the sequence, required for the inverse transformation, of the gen-
erated numbers from the initial value X 2);

i

— or a method of masking data based on the calculation of operations modulo, by transfor-
mation of a short string to a numerical form, if it includes letter characters, special characters and
digits, or by simply converting a string of digits to a number using standard conversion functions
(for example, for Oracle, this is the TO NUMBER function).

The privacy of the masking keys depends on where the keys are stored and who has access to

them. The proposed solution uses three keys (KIR, K{ , K_é:): two are private (generated crypto-
graphically strong PRNG) and one is public. All private keys are encrypted using the AES-256 al-

gorithm and stored in a special database table R*““"“’ . The values of these keys are never shown
and not known either to the database administrator (if he does not combine the functions of the se-
curity administrator), or to any other user. An authorized user, with appropriate privileges, which
will provide the correct key in an open session to decrypt the row of the special table, has the medi-

ate access through the corresponding middleware to the private keys KIR , K 5 . At that, the value of

this key is not shown anywhere in the clear, it cannot be traced even through the available means of
documenting executed queries (a historical command log). It is extracted in a certain way by the
special software of the DBMS server from the key container file, which an authenticated user with
the appropriate privileges must provide during the session opening.

Actions in case of encryption key compromise of the table R*“"

If the key with which the data (the private KIR , K 5 keys and some other information) of the
R*¢°™" table is encrypted, is compromised, it can be replaced with a new generated one using spe-
cially developed software (cryptographically strong PRNG is used for this). After that, the data of
the entire table R**’ is encrypted with the new key. At that, the private K{%, Kg keys are not
shown anywhere explicitly. Then, using special software, for legitimate users key container files for

R secret

decrypting the data of the table are formed.

Actions in case of compromise of separate private KlR , K g keys

When the compromise of separate private keys from sets of KIR, Kg they can also be generat-

ed using cryptographically strong PRNG and special developed software similarly the decryption

128 ISSN 0485-8972 Paouomexuuxa. 2019. Buin. 198

key of the R table. After that, it remains only to replace the compromised private keys with
new ones, pre-encrypting them with an AES-256 algorithm. At that, the newly generated private
keys are also not shown anywhere explicitly.

Conclusions

1. Analyzing the best practices of hiding information from leading vendors, a new approach to
data hiding was proposed, making it difficult for an attacker to implement the inference threat. This
approach was based on the principles of random permutation of the elements of a specific field of
the corresponding column (attribute) of the row (tuple) of the production database table data and
dynamic masking. It differs from the existing ones in that a preliminary physical change of sensitive
data is made in the production database, and a user who has the appropriate rights can cancel these
changes if it is necessary. That is, the corresponding user can restore all data changes made during
the masking procedure to their original state.

2. The authenticated user in the proposed solution gets access to sensitive data due to the abil-
ity to transform (rewrite) the query “on the fly”, and an attacker, even using complex as well as se-
quences of simple logically related queries, is limited in implementing the threat of inference during
an acceptable time for him (due to the fact that only the masked data is available to him).

3. It is possible to mask both an entire value of the field of the table row and its part using the
proposed solution. This is relevant on the one hand for masking such data as phone numbers, dis-
count cards, bank cards, serial numbers of equipments and devices, car numbers, etc. and on the
other hand, it allows reducing the number of operations for transformation large binary objects, and,
consequently, the implementation time, without losing the effectiveness of the masking procedure.

4. Studies have shown that the use of the ordinary encryption algorithm loses to the proposed
method not only by qualitative characteristics (primarily due to a change in the data representation
format and the inability to transform part of the row field value), but also by quantitative character-
istics (due to an increase in the length of the stored data and the transformation time for hiding data
(by about (10-17)%)).

5. A distinctive feature of the proposed solution is the approach to the process of data shuf-
fling, namely, shuffling data value elements within the demanded row field. At that, the basic op-
erations of the proposed method can also be used for vertical shuffling — permutation of values
within the column of the selected table.

6. The proposed approach to data masking can be used in both production and non-production
databases, expanding the possibilities of so-called static data masking.

References

1. Sandhu R. S., Jajodia S. (1993) Data and database security and controls // Handbook of information security
management. Auerbach Publishers, pp. 481-499.

2. Kulkarni S., Urolagin S. (2012) Review of attacks on databases and database security techniques // Internation-
al Journal of Emerging Technology and Advanced Engineering, 2(11), pp. 2250-2459.

3. Top ten database security threats. The most significant risks of 2015 and how to mitigate them, Imperva
Whitepaper, 2015 [Electronic resource]. Access mode :
https://informationsecurity.report/Resources/Whitepapers/e763d022-6ee4-4215-9efd-
1896b0d9c381 wp topten database threats%20imperva.pdf, last accessed 2019/09/01.

4. Rohilla S., Mittal P. K. (2013) Database Security: Threads and Challenges // International Journal of Advanced
Research in Computer Science and Software Engineering, 3(5), pp. 810-813.

5. Top 5 Database Security Threats, Imperva Whitepaper, 2016 [Electronic resource]. Access mode:
https://www.imperva.com/docs/gated/WP_Top 5 Database Security Threats.pdf, last accessed 2019/09/01.

6. Infowatch. Analytics. Digests and Reviews. Over 12 years, more than 30 billion personal data records have
leaked [Electronic resource]. Access mode : https://www.infowatch.ru/analytics/digest/15281, last accessed 2019/09/01.
(in Russian)

7. Global research on confidential information leaks in 2018, Analytical center InfoWatch, 2019 [Electronic re-
source]. Access mode:
https://www.infowatch.ru/sites/default/files/report/analytics/russ/InfoWatch Global Report 2018 year.pdf?rel=1, last
accessed 2019/09/01. (in Russian)

8. Pfleeger C. P., Pfleeger S. L., Margulies J. (2015) Security in Computing (Fifth Edition). Prentice Hall, 944 p.

ISSN 0485-8972 Paouomexnuxa. 2019. Boin. 198 129

9. Wang L., Jajodia S. (2008) Security in Data Warehouses and OLAP systems // Handbook of Database Securi-
ty, Springer, Boston, MA, pp. 191-212.

10.Zavgorodniy V. L. (2001) Complex information protection in computer systems. M. : Logos, PBOYUL N.A.
Egorov, 264 p. (in Russian).

11.Mayer-Schonberger V., Cukier K. (2013) Big Data: A Revolution That Will Transform How We Live, Work
and Think. Canada, Eamon Dolan/Houghton Mifflin Harcourt, 242 p.

12.Gartner IT Glossary [Electronic resource]. Access mode : https://www.gartner.com/it-glossary/dynamic-data-
masking-ddm, last accessed 2019/09/01.

13.A Net 2000 Ltd. White Paper. Data masking: What You Need to Know Before You Begin [Electronic re-
source]. Access mode : http://www.datamasker.com/DataMasking WhatY ouNeedToKnow.pdf, last accessed
2019/09/01.

14.Data Masking and Subsetting Guide [Electronic resource]. Access mode :
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmksb/introduction-to-oracle-data-maksing-and-
subsetting.html#GUID-24B241 AF-F77F-46ED-BEAE-3919BF1BBDS0, last accessed 2019/09/01.

15.Santos R. J., Bernardino J., Vieira M. A. (2011) Data masking technique for data warchouses // Proceedings of
the 15th Symposium on International Database Engineering & Applications, ACM, pp. 61-69.

16.Yesin V. L. (2018) Invariant to subject domains database schema and its distinctive features // Radiotekhnika :
193, pp. 133-142 (in Russian)

17.Yesin V. L., Yesina M. V., Rassomakhin S. G., Karpinski M. (2018) Ensuring Database Security with the Uni-
versal Basis of Relations // Saeed K., Homenda W. (eds) Computer Information Systems and Industrial Management.
CISIM 2018. Lecture Notes in Computer Science, 11127, Springer, Cham, Chapter 42, pp. 510-522.

18.Tirosh A., Meunier M. (2015) Magic Quadrant for Data Masking Technology, Worldwide Published: 22 De-
cember 2015 ID: G00273093 [Electronic resource]. Access mode : https://docplayer.net/12460751-Magic-quadrant-for-
data-masking-technology-worldwide.html, last accessed 2019/09/01.

19.Dworkin M. (2019) Recommendation for block cipher modes of operation. Methods for format-preserving en-
cryption // Draft NIST Special Publication, Ne 800-38G Revision 1 [Electronic resource]. Access mode :
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38Gr1-draft.pdf, last accessed 2019/09/01.

20.Schneier B. (1996) Applied cryptography: protocols, algorithms, and source code in C (2nd edition), John
Wiley & Sons, Inc., 758 p.

21.Mao W. (2003) Modern Cryptography: Theory and Practice. Prentice Hall PTR, 707 p.

22.Shannon C. (1949) Communication Theory of Secrecy Systems // Bell System Technical Journal, 28(4), pp.
656-715.

23.Ferguson N., Schneier B. (2003) Practical cryptography. New York, Wiley, 432 p.

24 Knuth, D. E., (1997) The Art of Computer Programming, Volume 1: Fundamental Algorithms (3rd ed.), Addi-
son-Wesley Professional, 650 p.

25.Fisher R. A, Yates F. (1948) Statistical Tables for Biological, Agricultural and Medical Research (3rd Edition).
Edinburgh and London, 13(3), pp.26-27.

26.Durstenfeld R. (1964) Algorithm 235: Random permutation / Communications of the ACM, 7(7), pp. 420.

27.Bacher A., Bodini O., Hollender,A., Lumbroso J., (2018) Merge Shuffle: a very fast, parallel random permuta-
tion algorithm // Proceedings of the 11th International Conference on Random and Exhaustive Generation of Combina-
torial Structures Athens, Greece, June 18-20, CEUR-WS.org/Vol-2113, pp. 43-52.

28.Knuth D. E. (1997) The Art of Computer Programming, Volume 2: Seminumerical Algorithms (3rd ed.). Ad-
dison-Wesley, Reading, MA, 762 p.

29.Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T. (1992) Numerical Recipes in C: The Art of
Scientific Computing (Second Edition). Cambridge University Press, 994 p.

30.Marsaglia G. (2003) Xorshift rngs // Journal of Statistical Software, 8(14), pp. 1-6.

31.Press W. H., Teukolsky S. A., Vetterling W. T. (2007) Flannery B. P. Numerical Recipes: The Art of Scientific
Computing (3rd ed.). New York, Cambridge University Press, 1235 p.

32.Patent No. 2,950,048, United States, Computer for Verifying Numbers / H. P. Luhn, Armonk, N.Y., assignor to
International Business Machines Corporation, New York, N.Y., a corporation of New York. Ser. No. 402,491; Aug. 23,
1960.

33.Bacher A., Bodini O., Hwang H. K., Tsai T. H. (2017) Generating random permutations by coin tossing: Clas-
sical algorithms, new analysis, and modern implementation, ACM Transactions on Algorithms, 13(2), 43 p.

34 Ravikumar G. K., Justus R., Ravindra S. H., Manjunath T. N., Archana R. A. (2011) Experimental study of
various data masking techniques with random replacement using data volume // International Journal of Computer Sci-
ence and Information Security, 9(8), pp.154-158.

Kharkiv National V.N. Karazin University Received 05.09.2019

130 ISSN 0485-8972 Paouomexuuxa. 2019. Buin. 198

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

